Advance Information Low-Voltage 1.8/2.5/3.3V 16-Bit Buffer With 26Ω Series Resistors 3.6V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74VCX162244 is an advanced performance, non-inverting 16-bit buffer. It is designed for very high-speed, very low-power operation in 1.8V, 2.5V or 3.3V systems.

When operating at 2.5V (or 1.8V) the part is designed to tolerate voltages it may encounter on either inputs or outputs when interfacing to 3.3V busses. It is guaranteed to be over-voltage tolerant to 3.6V.

The MC74VCX162244 is nibble controlled with each nibble functioning identically, but independently. It is designed with 26Ω series resistors in each of the outputs to reduce noise. The control pins may be tied together to obtain full 16-<u>bit operation</u>. The 3-state outputs are <u>controlled</u> by an Output Enable (OEn) in<u>put for</u> each nibble. When OEn is LOW, the outputs are on. When OEn is HIGH, the outputs are in the high impedance state.

- Designed for Low Voltage Operation: $V_{CC} = 1.8-3.6V$
- 3.6V Tolerant Inputs and Outputs
- High Speed Operation: 3.3ns max for 3.0 to 3.6V
 - 3.8ns max for 2.3 to 2.7V 5.7ns max for 1.8V
- Static Drive:
- ±12mA Drive at 3.0V ±8mA Drive at 2.3V ±4mA Drive at 1.8V
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When V_{CC} = 0V
- Near Zero Static Supply Current in All Three Logic States (20µA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds ±300mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

LOW–VOLTAGE 1.8/2.5/3.3V 16–BIT BUFFER WITH 26Ω SERIES RESISTORS

PIN NAMES

Pins Function	
OEn	Output Enable Inputs
D0–D15	Inputs
O0–O15	Outputs

This document contains information on a new product. Specifications and information herein are subject to change without notice.

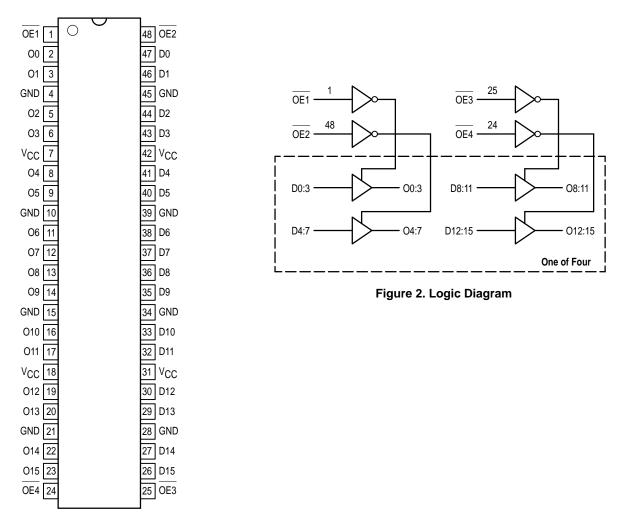


Figure 1. 48–Lead Pinout (Top View)

OE1	D0:3	O0:3	OE2	D4:7	04:7	OE3	D8:11	O8:11	OE4	D12:15	012:15
L	L	L	L	L	L	L	L	L	L	L	L
L	Н	Н	L	Н	Н	L	Н	Н	L	Н	Н
Н	Х	Z	Н	Х	Z	Н	Х	Z	Н	Х	Z

H = High Voltage Level; L = Low Voltage Level; Z = High Impedance State; X = High or Low Voltage Level and Transitions Are Acceptable, for I_{CC} reasons, DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
VCC	DC Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	$-0.5 \le V_{I} \le +4.6$		V
VO	DC Output Voltage	$-0.5 \le V_{O} \le +4.6$	Output in 3–State	V
		$-0.5 \le V_{O} \le V_{CC} + 0.5$	Note 1.; Outputs Active	V
lικ	DC Input Diode Current	-50	V _I < GND	mA
loк	DC Output Diode Current	-50	V _O < GND	mA
		+50	VO > VCC	mA
Ι _Ο	DC Output Source/Sink Current	±50		mA
ICC	DC Supply Current Per Supply Pin	±100		mA
IGND	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. 1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
VCC	Supply Voltage Data Re	Operating etention Only	1.8 1.2	3.6 3.6	V
VI	Input Voltage		-0.3	3.6	V
Vo	Output Voltage (.	0 0	VCC 3.6	V	
ЮН	HIGH Level Output Current, V _{CC} = 3.0V – 3.6V			-12	mA
I _{OL}	LOW Level Output Current, V _{CC} = 3.0V - 3.6V			12	mA
ЮН	HIGH Level Output Current, $V_{CC} = 2.3V - 2.7V$			-8	mA
I _{OL}	LOW Level Output Current, $V_{CC} = 2.3V - 2.7V$			8	mA
IOH	HIGH Level Output Current, V _{CC} = 1.8V			-4	mA
I _{OL}	LOW Level Output Current, V _{CC} = 1.8V			4	mA
T _A	Operating Free–Air Temperature		-40	+85	°C
Δt/ΔV	Input Transition Rise or Fall Rate, V _{IN} from 0.8V to 2.0V, V _{CC} = $3.0V$		0	10	ns/V

MC74VCX162244

DC ELECTRICAL CHARACTERISTICS (2.7V < $V_{CC} \leq 3.6V)$

			T _A = −40°C to +85°C		
Symbol	Characteristic	Condition	Min	Max	Unit
VIH	HIGH Level Input Voltage (Note 2.)	2.7V < V _{CC} ≤ 3.6V	2.0		V
VIL	LOW Level Input Voltage (Note 2.)	2.7V < V _{CC} ≤ 3.6V		0.8	V
VOH	HIGH Level Output Voltage	$2.7V < V_{CC} \le 3.6V; I_{OH} = -100\mu A$	V _{CC} – 0.2		V
		$V_{CC} = 2.7V; I_{OH} = -6mA$	2.2		1
		V _{CC} = 3.0V; I _{OH} = -8mA	2.4		1
		$V_{CC} = 3.0V; I_{OH} = -12mA$	2.2		1
VOL	LOW Level Output Voltage	$2.7V < V_{CC} \le 3.6V; I_{OL} = 100\mu A$		0.2	V
		V _{CC} = 2.7V; I _{OL} = 6mA		0.4	1
		V _{CC} = 3.0V; I _{OL} = 8mA		0.55	1
		$V_{CC} = 3.0V; I_{OL} = 12mA$		0.8	1
lj	Input Leakage Current	$2.7V < V_{CC} \le 3.6V; 0V \le V_I \le 3.6V$		±5.0	μΑ
I _{OZ}	3–State Output Current	$2.7V < V_{CC} \le 3.6V; \ 0V \le V_O \le 3.6V; \\ V_I = V_{IH} \ or \ V_{IL}$, and the second		μA
IOFF	Power-Off Leakage Current	$V_{CC} = 0 \forall; 0 \forall \leq (\forall_I, \forall_O) \leq 3.6 \forall$		10	μΑ
ICC	Quiescent Supply Current	$2.7V < V_{CC} \le 3.6V; V_I = GND \text{ or } V_{CC}$		20	μΑ
		$2.7V < V_{CC} \le 3.6V; V_{CC} \le (V_I, V_O) \le 3.6V$		±20	μΑ
∆ICC	Increase in ICC per Input	$2.7V < V_{CC} \le 3.6V; V_{IH} = V_{CC} - 0.6V$		750	μA

2. These values of V_I are used to test DC electrical characteristics only.

DC ELECTRICAL CHARACTERISTICS (2.3V \leq V_CC \leq 2.7V)

			T _A = −40°C to +85°C		
Symbol	Characteristic	Condition	Min	Max	Unit
VIH	HIGH Level Input Voltage (Note 3.)	$2.3V \le V_{CC} \le 2.7V$	1.6		V
VIL	LOW Level Input Voltage (Note 3.)	$2.3V \le V_{CC} \le 2.7V$		0.7	V
Vон	HIGH Level Output Voltage	$2.3V \le V_{CC} \le 2.7V; I_{OH} = -100\mu A$	V _{CC} – 0.2		V
		V _{CC} = 2.3V; I _{OH} = -4mA	2.0		
		V _{CC} = 2.3V; I _{OH} = -6mA	1.8		
		V _{CC} = 2.3V; I _{OH} = -8mA	1.7		
VOL	LOW Level Output Voltage	$2.3V \le V_{CC} \le 2.7V; I_{OL} = 100\mu A$		0.2	V
		$V_{CC} = 2.3V; I_{OL} = 6mA$		0.4	
		V _{CC} = 2.3V; I _{OL} = 8mA		0.6	
lj	Input Leakage Current	$2.3V \leq V_{CC} \leq 2.7V; \ 0V \leq V_I \leq 3.6V$		±5.0	μA
I _{OZ}	3-State Output Current	$\begin{array}{c} 2.3 \text{V} \leq \text{V}_{CC} \leq 2.7 \text{V}; \\ 0 \text{V} \leq \text{V}_{O} \leq 3.6 \text{V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL} \end{array}$		±10	μΑ
IOFF	Power–Off Leakage Current	$V_{CC} = 0V; 0V \leq (V_I, V_O) \leq 3.6V$		10	μΑ
ICC	Quiescent Supply Current	$2.3V \le V_{CC} \le 2.7V; V_I = GND \text{ or } V_{CC}$		20	μA
		$2.3 \text{V} \leq \text{V}_{CC} \leq 2.7 \text{V}; \text{ V}_{CC} \leq (\text{V}_{I}, \text{ V}_{O}) \leq 3.6 \text{V}$		±20	μA

3. These values of V_I are used to test DC electrical characteristics only.

DC ELECTRICAL CHARACTERISTICS (1.8V \leq V_{CC} < 2.3V)

			T _A = −40°C to +85°C		
Symbol	Characteristic	Condition	Min	Max	Unit
VIH	HIGH Level Input Voltage	$1.8V \le V_{CC} < 2.3V$	$0.7 \times V_{CC}$		V
VIL	LOW Level Input Voltage	$1.8V \le V_{CC} < 2.3V$		$0.2 \times V_{CC}$	V
VOH	HIGH Level Output Voltage	V _{CC} = 1.8V; I _{OH} = -100μA	V _{CC} - 0.2		V
		$V_{CC} = 1.8V; I_{OH} = -4mA$	1.4		
V _{OL}	LOW Level Output Voltage	$V_{CC} = 1.8V; I_{OL} = 100\mu A$		0.2	V
		$V_{CC} = 1.8V; I_{OL} = 4mA$		0.3	
Ц	Input Leakage Current	$V_{CC} = 1.8V; 0 \le V_I \le 3.6V$		±5.0	μΑ
I _{OZ}	3-State Output Current	V_{CC} = 1.8V; 0 \leq V_O \leq 3.6V; V_I = V_{IH} or V_IL		±10	μΑ
IOFF	Power-Off Leakage Current	$V_{CC} = 0V; 0V \le (V_I, V_O) \le 3.6V$		10	μΑ
ICC	Quiescent Supply Current	$V_{CC} = 1.8V; V_I = V_{CC} \text{ or } GND$		20	μΑ
		$V_{CC} = 1.8V; V_{CC} \le (V_I, V_O) \le 3.6V$		±20	

AC CHARACTERISTICS (Note 4.; $t_R = t_F = 2.0ns$; $C_L = 30pF$; $R_L = 500\Omega$)

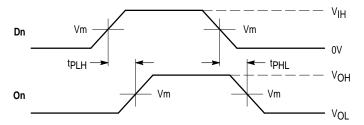
					Limits			
				T _A :	= –40°C to +8	5°C		1
			V _{CC} = 3.	0V to 3.6V	V _{CC} = 2.3	3V to 2.7V	V _{CC} = 1.8V	1
Symbol	Parameter	Waveform	Min	Max	Min	Max	Max	Unit
^t PLH ^t PHL	Propagation Delay Input to Output	1	0.8 0.8	3.3 3.3	1.0 1.0	3.8 3.8	5.7 5.7	ns
^t PZH ^t PZL	Output Enable Time to High and Low Level	2	0.8 0.8	3.8 3.8	1.0 1.0	5.1 5.1	6.7 6.7	ns
^t PHZ ^t PLZ	Output Disable Time From High and Low Level	2	0.8 0.8	3.6 3.6	1.0 1.0	4.0 4.0	5.0 5.0	ns
^t OSHL ^t OSLH	Output-to-Output Skew (Note 5.)			0.5 0.5		0.5 0.5	0.5 0.5	ns

4. These AC parameters are preliminary and may be modified prior to release. For C_L = 50pF, add approximately 300ps to the AC maximum specification.

 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

			T _A = +25°C	
Symbol	Characteristic	Condition	Тур	Unit
VOLP	Dynamic LOW Peak Voltage	$V_{CC} = 1.8V, C_L = 30$ pF, $V_{IH} = V_{CC}, V_{IL} = 0$ V	0.15	V
	(Note 6.)	V_{CC} = 2.5V, C_L = 30pF, V_{IH} = V_{CC} , V_{IL} = 0V	0.25	
		V_{CC} = 3.3V, C_{L} = 30pF, V_{IH} = V_{CC} , V_{IL} = 0V	0.35]
VOLV	Dynamic LOW Valley Voltage	V_{CC} = 1.8V, C_L = 30pF, V_{IH} = V_{CC} , V_{IL} = 0V	-0.15	V
	(Note 6.)	V_{CC} = 2.5V, C_L = 30pF, V_{IH} = V_{CC} , V_{IL} = 0V	-0.25	
		V_{CC} = 3.3V, C_{L} = 30pF, V_{IH} = V_{CC} , V_{IL} = 0V	-0.35	
VOHV	Dynamic HIGH Valley Voltage	V_{CC} = 1.8V, C_L = 30pF, V_{IH} = V_{CC} , V_{IL} = 0V	1.55	V
	(Note 7.)	V_{CC} = 2.5V, C_L = 30pF, V_{IH} = V_{CC} , V_{IL} = 0V	2.05]
		V_{CC} = 3.3V, C_{L} = 30pF, V_{IH} = V_{CC} , V_{IL} = 0V	2.65	


 Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

7. Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the HIGH state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	Note 8.	6	pF
COUT	Output Capacitance	Note 8.	7	pF
C _{PD}	Power Dissipation Capacitance	Note 8., 10MHz	20	pF

8. $V_{CC} = 1.8$, 2.5 or 3.3V; $V_I = 0V$ or V_{CC} .

WAVEFORM 1 – PROPAGATION DELAYS $t_{R} = t_{F} = 2.0ns, 10\%$ to 90%; f = 1MHz; $t_{W} = 500ns$

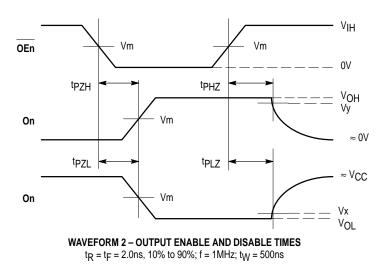
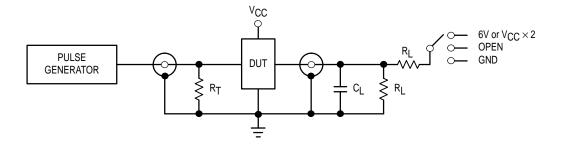
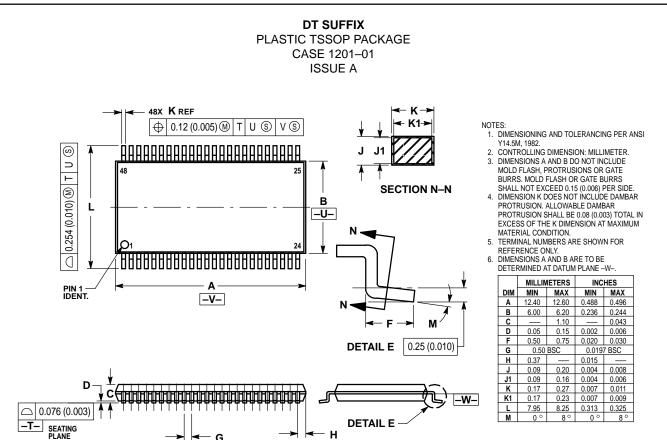



Figure 3. AC Waveforms

		VCC				
Symbol	3.3V ±0.3V	2.5V ±0.2V	1.8V			
VIH	2.7V	Vcc	Vcc			
Vm	1.5V	V _{CC} /2	V _{CC} /2			
V _X	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V			
Vy	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V			



TEST	SWITCH
^t PLH ^{, t} PHL	Open
^t PZL ^{, t} PLZ	6V at V _{CC} = 3.3 ±0.3V; V _{CC} × 2 at V _{CC} = 2.5 ±0.2V; 1.8V
^t PZH, ^t PHZ	GND

 $C_L = 30 pF$ or equivalent (Includes jig and probe capacitance) $R_L = 500\Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 4. Test Circuit

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **()** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 – US & Canada ONLY 1–800–774–1848

INTERNET: http://motorola.com/sps

