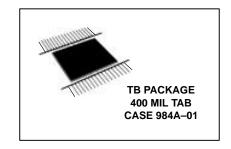
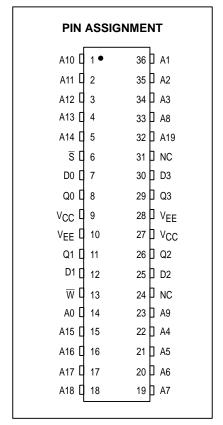
Product Preview

1M x 4 Bit Fast Static Random Access Memory with ECL I/O


The MCM101524 is a 4,194,304 bit static random access memory organized as 1,048,576 words of 4 bits. This circuit is fabricated using high performance silicon—gate BiCMOS technology. Asynchronous design eliminates the need for external clocks or timing strobes.


The MCM101524 is available in a 400 mil, 36 lead TAB.

- · Fast Access Times: 12, 15 ns
- Equal Address and Chip Select Access Times
- Power Operation: 195 mA Maximum, Active AC

BLOCK DIAGRAM Λ EE **VCC** MEMORY MATRIX ROW 1024 ROWS x DECODER A12 4096 COLUMNS A11 A10 Α9 Α8 D0 COLUMN I/O **INPUT COLUMN DECODER** DATA D3 CONTROL Q0 A19 A18 A7 A6 A5 A4 A3 A2 A1 A0 03Q₀

MCM101524

PIN NAMES					
A0 – A19 Address Inputs S Chip Select	D0 – D3 Data Input				
Q0 – Q3 Data Output	NC No Connection				
VEE Power Supply	VCC Ground				

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

REV 2 9/94

TRUTH TABLE (X = Don't Care)

S	W	Operation	Data	Output	Current
Н	Х	Not Enabled	Х	L	_
L	Н	Read	Х	Q	IEE
L	L	Write	Х	L	IEE

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
VEE Pin Potential (to Ground)	VEE	- 7.0 to + 0.5	V
Voltage Relative to V _{CC} for Any Pin Except V _{EE}	V _{in} , V _{out}	V _{EE} - 0.5 to + 0.5	V
Output Current (per I/O)	l _{out}	- 50	mA
Power Dissipation	PD	2.0	W
Temperature Under Bias	T _{bias}	- 30 to + 85	°C
Operating Temperature	TJ	0 to + 60	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 0 \text{ V}, V_{EE} = -5.2 \text{ V} \pm 5\%, T_{J} = 0 \text{ to } +60^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

DC OPERATING CONDITIONS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	VEE	- 5.46	- 5.2	- 4.94	V
Input High Voltage	VIH	- 1165	_	- 880	mV
Input Low Voltage	V _{IL}	- 1810	_	– 1475	mV
Output High Voltage	Voн	- 1025	_	- 880	mV
Output Low Voltage	VOL	- 1810	_	- 1620	mV
Input Low Current	Ι _Ι L	- 50	_	_	μΑ
Input High Current	ΊΗ	_	_	220	μΑ
Chip Select Input Low Current	IL(CS)	0.5	_	170	μΑ
Operating Power Supply Current: ^t AVAV = 20 ns (All Outputs Open)*	IEE	_	_	– 195	mA
Quiescent Power Supply Current: f ₀ = 0 MHz (Outputs Open)	IEEQ	_	_	– 150	mA
Voltage Compensation (VOH)	ΔVΟΗ/ΔVΕΕ	±35 mV/V @ -4.94 to -5.46 V			
Voltage Compensation (VOL)	ΔV _{OL} /ΔV _{EE}	± 60	mV/V @ – 4.9	94 to – 5.46 V	

^{*} Address Increment

RISE/FALL TIME CHARACTERISTICS

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output Rise Time	t _r	20% to 80%	0.5	1.0	1.5	ns
Output Fall Time	t _f	20% to 80%	0.5	1.0	1.5	ns

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance Address and Data $\overline{S}, \overline{W}$	C _{in} C _{ck}	3.5 4	7 7	pF
Output Capacitance Q	C _{out}	4	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{EE} = -5.2 V \pm 5%, V_{CC} = 0 V, T_J = 0 to +60°C, Unless Otherwise Noted)

Input Pulse Levels	Output Timing Measurement Reference Level VOH = - 1165 mV
Input Rise/Fall Time 1 ns	$V_{OL} = -1475 \text{ mV}$
Input Timing Measurement Reference Level 50%	Output Load (AC Test Circuit) See Figure 2

READ CYCLE TIMING (See Notes 1 and 2)

		MCM101		MCM101524-15			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	t _{AVAV}	12	_	15	_	ns	2, 3
Address Access Time	tAVQV	_	12	_	15	ns	
Chip Select Access Time	tSLQV	_	12	_	15	ns	6
Select High to Output Low	tSHQL	0	8	0	9	ns	
Output Hold from Address Change	t _{AXQX}	4	-	4	_	ns	
Power Up Time	tSLIEEH	0	-	0	_	ns	4
Power Down Time	^t SHIEEL	_	12	_	15	ns	4

NOTES:

- 1. \overline{W} is high for read cycle.
- 2. Product sensitivites to noise require proper grounding and decoupling of power supplies during read and write cycles.
- 3. All read cycle timings are referenced from the last valid address to the first transitioning address.
- 4. This parameter is sampled and not 100% tested.
- 5. Device is continuously selected $(\overline{S} \le V_{|L})$. 6. Addresses valid prior to or coincident with \overline{S} going low.

AC TEST CONDITIONS

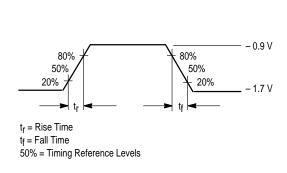
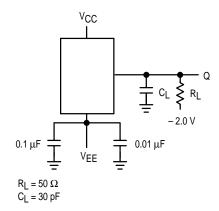
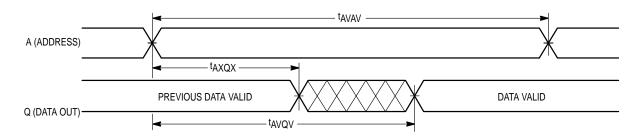
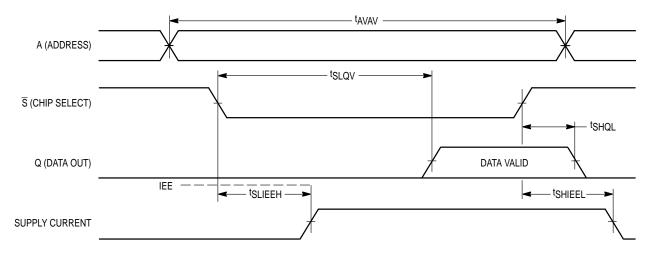


Figure 1. Input Levels

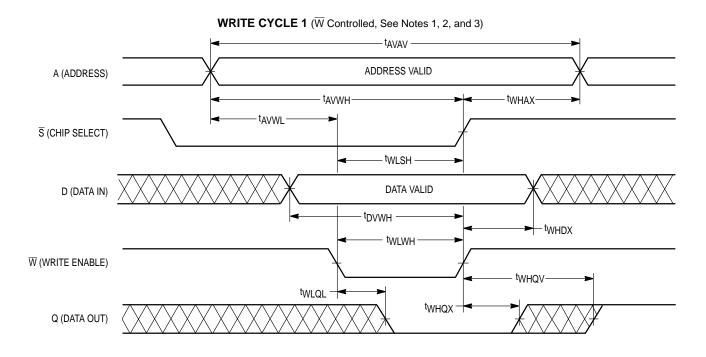




Figure 2. AC Test Circuit

MOTOROLA FAST SRAM MCM101524

READ CYCLE 1 (See Notes 1, 2, and 5)

READ CYCLE 2 (See Note 6)


MCM101524 MOTOROLA FAST SRAM

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

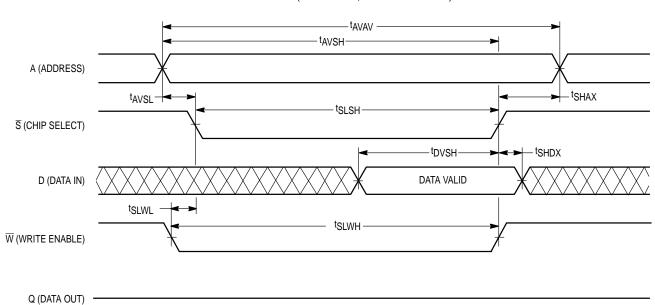
		MCM10	1524–12	MCM10	1524–15		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	t _{AVAV}	12	_	15	_	ns	3
Address Setup Time	tAVWL	1	_	1	_	ns	
Address Valid to End of Write	^t AVWH	9	_	10	_	ns	
Write Pulse Width	tWLWH, tWLSH	8	_	9	_	ns	
Data Valid to End of Write	^t DVWH	8	_	9	_	ns	
Data Hold Time	tWHDX	1	_	1	_	ns	
Write High to Output Active	tWHQX	4	_	4	_	ns	4
Write High to Output Valid	tWHQV	_	13	_	16	ns	
Write Recovery Time	tWHAX	1	_	1	_	ns	
Write Low to Output Low	tWLQL	0	8	0	9	ns	

NOTES:

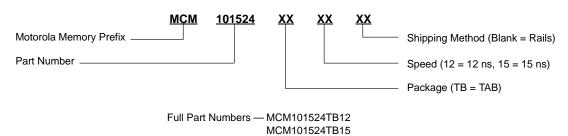
- 1. A write occurs during the overlap of \overline{S} low and \overline{W} low.
- 2. Product sensitivites to noise require proper grounding and decoupling of power supplies during read and write cycles.
- 3. All write cycle timings are referenced from the last valid address to the first transitioning address.
- 4. This parameter is sampled and not 100% tested.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

MOTOROLA FAST SRAM MCM101524

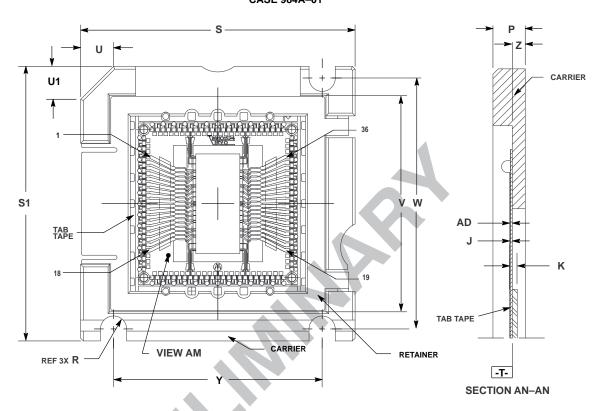

WRITE CYCLE 2 (\$\overline{S}\$ Controlled, See Notes 1 and 2)

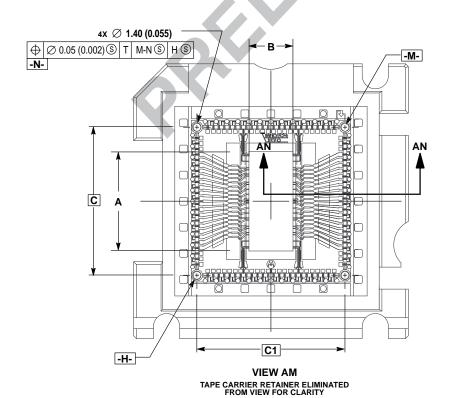
		MCM10	1524–12	MCM10	1524–15		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	t _{AVAV}	12	_	15	_	ns	3
Address Setup Time	†AVSL	1	_	1	_	ns	
Address Valid to End of Write	^t AVSH	9	_	10	_	ns	
Write Pulse Width $\overline{\overline{(S)}}$ $\overline{\overline{(W)}}$	^t SLSH ^t SLWH	8	_	9	_	ns	
Data Valid to End of Write	^t DVSH	8	_	9	_	ns	
Chip Select Set–Up Time	tSLWL	0	_	0	_	ns	
Data Hold Time	tSHDX	1	_	1	_	ns	
Write Recovery Time	^t SHAX	1	_	1	_	ns	


NOTES:

- 1. A write occurs during the overlap of \overline{S} low and \overline{W} low.
- 2. Product sensitivites to noise require proper grounding and decoupling of power supplies during read and write cycles.
- 3. All write cycle timings are referenced from the last valid address to the first transitioning address.

WRITE CYCLE 2 (S Controlled, See Notes 1 and 2)

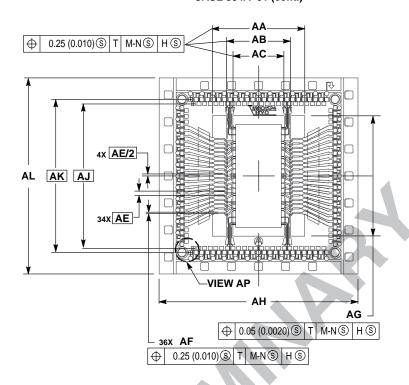

ORDERING INFORMATION (Order by Full Part Number)

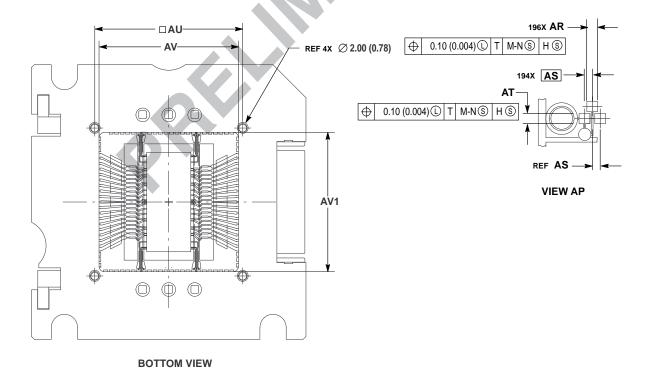


MCM101524 MOTOROLA FAST SRAM

PACKAGE DIMENSIONS

TB PACKAGE 400 MIL TAB CASE 984A-01




- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIN	IETERS	TERS INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	18.14	REF	0.714	REF	
В	8.03	REF	0.316	REF	
С	26.95	BSC	1.061	BSC	
C1	26.95	BSC	1.061	BSC	
J		0.25		0.010	
K		0.71		0.028	
Р	3.00	REF	0.118	REF	
R	2.39	REF	0.094	REF	
S	50.00	REF	1.969	REF	
S1	50.00	REF	1.969	REF	
U	6.00	REF	0.236	REF	
U1	6.00	REF	0.236	REF	
٧	39.40	REF	1.551	REF	
W	45.68	REF	1.798	REF	
Υ	38.00	REF	1.496	REF	
Z	1.15	1.25	0.045	0.049	
AA	16.21	16.31	0.638	0.642	
AB	11.20	11.30	0.441	0.445	
AC	8.99	9.09	0.354	0.358	
AD	0.15	0.21	0.006	0.008	
ΑE	0.762	BSC	0.030	BSC	
AF	0.18	0.28	0.007	0.011	
AG	21.31	21.24	0.832	0.836	
AH	35.00	REF	1.378	REF	
AJ	25.40	REF	1.000	REF	
AK	26.95	BSC	1.061	BSC	
AL	34.98	REF	1.377 REF		
AR	0.65	0.75	0.026	0.030	
AS	0.50		0.020 BSC		
ΑT	0.60	0.70	0.024 0.028		
ΑU	26.95	REF	1.061 REF		
ΑV	25.35	25.45	0.998	1.002	
AV1	25.35	25.45	0.998	1.002	

MOTOROLA FAST SRAM MCM101524

TB PACKAGE 400 MIL TAB CASE 984A-01 (cont.)

Literature Distribution Centers:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

JAPAN: Nippon Motorola Lit.; 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

