MCM321024

Advance Information

1M x 32 Bit Fast Static RAM Module

The MCM321024 is an 32M bit static random access memory module organized as 1,048,576 words of 32 bits. The module is a 72–lead single in–line memory module (SIMM) consisting of eight MCM6249 fast static RAMs packaged in 32–lead SOJ packages and mounted on a printed circuit board along with sixteen decoupling capacitors.

The MCM6249 is a high performance CMOS fast static RAM organized as 1,048,576 words of 4 bits. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM321024 is equipped with output enable (G) and four <u>separate</u> byte enable (E1 - E4) inputs, allowing for greater s<u>ystem</u> flexibility. The G input, when high, will force the outputs to high impedance. Ex high will do the same for byte x.

PD0 – PD3 are reserved for density identification. PD0 and PD2 are connected to ground. These pins can be used to identify the density of the memory module.

- Single 5 V \pm 10% Power Supply
- Fast Access Time: 20/25 ns
- Three–State Outputs
- Fully TTL Compatible
- JEDEC Standard Pinout
- Power Requirement: 1520/1400 mA Maximum, Active AC
- High Board Density SIMM Package
- Byte Operation: Four Separate Chip Enables, One for Each Byte (Eight Bits)
- High Quality Six–Layer FR4 PWB with Separate Internal Power and Ground Planes
- Incorporates Motorola's State-of-the-Art Fast Static RAMs

PIN NAMES
A0 – A19 Address Inputs
W Write Enable
<u>G</u> Output Enable
E1 – E4 Byte Enables
DQ0 – DQ31 Data Input/Output
V _{CC} · · · · · · · · · · · · · · · · · ·
V _{SS} Ground
PD0 – PD3 Package Density
NC No Connect

For proper operation of the device, $\mathsf{V}_{\ensuremath{SS}}$ must be connected to ground.

PIN ASSIGNMENT

TOP VIEW 72 LEAD SIMM — CASE TBD

NC	Г ₂	1]	NC
PD3	П4	3]	PD2
PD0	П6	5]	V _{SS}
DOO	П8	7]	PD1
DQ1	10	9]	DQ8
DQ2	12	11	DQ9
DQ3	14	13	DQ10
Vcc	16	15	DQ11
A7	[18	17	A0
A8	20	19	A1
A9	22	21	A2
DQ4	24	23	DQ12
DQ5	26	25	DQ13
DQ6	28	27	DQ14
DQ <u>7</u>	0 30	29	DQ15
W	32	31	V _{SS}
A14	L 34	33 🛛	A15
E1	36	35 🛛	E2
E3	П 38	37	E4
A16	40	39	A17
VSS	42	41	G
DQ16	44	43	DQ24
DQ17	46	45	DQ25
DQ18	48	47	DQ26
DQ19	50	49	DQ27
A10	52	51	A3
A11	54	53	A4
A12	56	55	A5
A13	58	57	VCC
DQ20	60	59	A6
DQ21	62	61	DQ28
DQ22	64	63	DQ29
DQ23	66	65	DQ30
VSS	68	67	DQ31
A19	0 70	69	A18
NC	72	71	NC
	L		

This document contains information on a new product. Specifications and information herein are subject to change without notice.

REV 1 11/15/96

FUNCTIONAL BLOCK DIAGRAM 1M x 32 MEMORY MODULE

TRUTH TABLE

Ex	G	w	Mode	V _{CC} Current	Output	Cycle
н	Х	Х	Not Selected	I _{SB1} or I _{SB2}	High–Z	
L	Н	Н	Read	ICCA	High–Z	_
L	L	Н	Read	ICCA	D _{out}	Read Cycle
L	Х	L	Write	ICCA	D _{in}	Write Cycle

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS} = 0 V)

	-		
Rating	Symbol	Value	Unit
Power Supply Voltage	VCC	- 0.5 to 7.0	V
Voltage Relative to V _{SS}	V _{in} , V _{out}	– 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	l _{out}	± 30	mA
Power Dissipation	PD	8.0	W
Temperature Under Bias	T _{bias}	– 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperatrue	T _{stg}	– 25 to + 125	°C

The devices on this module contain circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedance circuits.

These CMOS memory circuits have been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The module is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages Referenced to VSS = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2		V _{CC} +0.3*	V
Input Low Voltage	VIL	- 0.5**	_	0.8	V

 * VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns) ** VIL (min) = – 3.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, $V_{in} = 0$ to V_{CC})	l _{lkg(l)}	_	—	± 8	μΑ
Output Leakage Current (G, $Ex = V_{IH}$, $V_{out} = 0$ to V_{CC})	l _{lkg(O)}	_	—	± 8	μΑ
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ICCA		1440 1320	1520 1400	mA
AC Standby Current (Ex = V_{IH} , Cycle time $\ge t_{AVAV}$ min)	I _{SB1}	_	400	480	mA
CMOS Standby Current (Ex \geq V_CC – 0.2 V, All Inputs \geq V_CC – 0.2 V or \leq 0.2 V)	I _{SB2}	_	80	120	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	—	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	Vон	2.4	—	_	V

NOTE: Good decoupling of the local power supply should always be used.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic			Тур	Max	Unit
Input Capacitance	(All pins except DQ0 – DQ31, W, G, and <u>E1 – E4)</u> E1 <u>– E4</u> W, G	C _{in}	32 10 40	48 14 64	pF
Input/Output Capacitance	(DQ0 – DQ31)	Cout	8	9	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Output Timing Reference Level	1.5 V
Input Pulse Levels 0 to	3.0 V

 Output Load
 See Figure 1a Unless Otherwise Noted

 Input Rise/Fall Time
 3 ns

READ CYCLE TIMING (See Notes 1 and 2)

		MCM321024-20		MCM321024-25			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	t _{AVAV}	20		25		ns	3
Address Access Time	^t AVQV	—	20		25	ns	
Enable Access Time	^t ELQV	—	20		25	ns	
Output Enable Access Time	^t GLQV	—	7		9	ns	
Output Hold from Address Change	^t AXQX	5		5		ns	
Enable Low to Output Active	^t ELQX	5		5	_	ns	4,5,6
Output Enable to Output Active	^t GLQX	0		0		ns	4,5,6
Enable High to Output High–Z	^t EHQZ	0	9	0	10	ns	4,5,6
Output Enable High to Output High–Z	^t GHQZ	0	9	0	10	ns	4,5,6
Power Up Time	^t ELICCH	0	_	0	_	ns	
Power Down Time	^t EHICCL	_	20	_	25	ns	

NOTES:

1. W is high for read cycle.

2. E1 – E4 are represented by E in these timing specifications, any combination of Exs may be asserted.

3. All read cycle timing is referenced from the last valid address to the first transitioning address.

4. At any given voltage and temperature, t_{EHQZ} max is less than t_{ELQX} min, and t_{GHQZ} max is less than t_{GLQX} min, both for a given device and from device to device.

5. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1b.

6. This parameter is sampled and not 100% tested.

7. Device is continuously selected (E = V_{IL} , G = V_{IL}). See Read Cycle 1.

Figure 1. Test Loads

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time. On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ CYCLE 1 (See Note 7 Above)

NOTE: Addresses valid prior to or coincident with \overline{E} going low.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

		MCM321024-20		20 MCM321024-25			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	t _{AVAV}	20		25		ns	3
Address Setup Time	^t AVWL	0		0		ns	
Address Valid to End of Write	^t AVWH	15		17		ns	
Write Pulse Width	^t WLWH, ^t WLEH	15	—	17	_	ns	
Data Valid to End of Write	^t DVWH	10		10		ns	
Data Hold Time	^t WHDX	0		0		ns	
Write Low to Data High–Z	tWLQZ	0	9	0	10	ns	4,5,6
Write High to Output Active	tWHQX	5		5		ns	4,5,6
Write Recovery Time	tWHAX	0		0		ns	

NOTES:

1. <u>A write occurs during the overlap of E low and W low.</u>

2. $\overline{E1} - \overline{E4}$ are represented by \overline{E} in these timing specifications, any combination of \overline{Exs} may be asserted. \overline{G} is a don't care when \overline{W} is low.

3. All write cycle timing is referenced from the last valid address to the first transitioning address.

4. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1b.

5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, t_{WLQZ} max is less than t_{WHQX} min both for a given device and from device to device.

WRITE CYCLE 1

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

		MCM321024-20		MCM321024-25			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	^t AVAV	20	—	25	—	ns	3
Address Setup Time	^t AVEL	0	—	0	—	ns	
Address Valid to End of Write	^t AVEH	15	—	17	—	ns	
Enable to End of Write	^t ELEH	15	—	17	—	ns	4,5
Enable to End of Write	^t ELWH	15	—	17	—	ns	
Write Pulse Width	^t WLEH	15	—	17	—	ns	
Data Valid to End of Write	^t DVEH	10	—	10	—	ns	
Data Hold Time	^t EHDX	0	—	0	—	ns	
Write Recovery Time	^t EHAX	0	_	0	_	ns	

NOTES:

1. <u>A write occurs during the over</u>lap of E low and W low.

2. $\overline{E1} - \overline{E4}$ are represented by \overline{E} in these timing specifications, any combination of \overline{Exs} may be asserted. \overline{G} is a don't care when \overline{W} is low.

3. All_write cycle timing is referenced from the last valid address to the first transitioning address.

4. If <u>E</u> goes low coincident with or after W goes low, the output will remain in a high impedance condition.

5. If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

WRITE CYCLE 2

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447 Mfax is a trademark of Motorola, Inc.

 \Diamond

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://motorola.com/sps

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, - US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

