MCM69Q618

Advance Information 64K x 18 Bit Synchronous Separate I/O Fast SRAM

The Motorola MCM69Q618 is a 1 Megabit static random access memory, organized as 64K words of 18 bits. It features separate data input and data output buffers and incorporates input and output registers on board with high speed SRAM.

The MCM69Q618 allows the user to perform transparent write and data pass through. Two data bus ports are provided – a data input (D) and a data output (Q) port.

The synchronous design allows for precise cycle control with the use of an external single clock (K). Address port, data input (D0 - D17), data output (Q0 - Q17), write enable (W), chip enables (E1, E2), and pass-through enable (PT) are registered on the rising edge of clock (K).

Any given cycle operates on only one address. However, for any cycle, reads and writes can be intermixed. Thus, one can perform a read, a write, or a combination read/ write during any one cycle. For a combination read/write, the contents of the array are read before the new data is written.

By using the pass-through function, the output port Q can be made to reflect either the contents of the array or the data presented to the input port D. For read/write or a read cycle with G low, the Q port will output the contents of the array. However, if PT M69C is asserted, the Q port will instead output the data presented at the D input port.

- Single 3.3 V ± 5% Power Supply •
- Fast Access Times: 6/8/10 ns Max
- Sustained Throughput of 1.49 Gigabits/Second
- Single Clock Operation •
- · Address, Data Input, E1, E2, PT, W, and Data Output Registers on Chip
- 83 MHz Maximum Clock Cycle Time
- Self Timed Write
- Separate Data Input and Data Output Pins
- Pass–Through Feature
- Asynchronous Output Enable (G)
- LVTTL Compatible I/O
- No Dead Cycles Required for Reads after Writes or for Writes after Reads
- 100 Pin TQFP Package
- Simultaneous Reads and Writes •

Suggested Applications

— ATM	 — Ethernet Switches 	— Routers
— Cell/Frame Buffers	 — SNA Switches 	 — Shared Memory

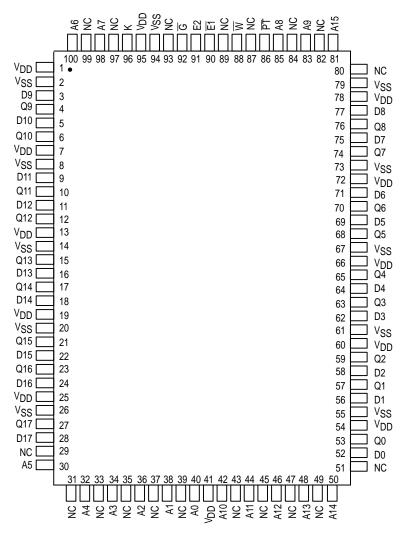
Product Family Configurations

Part Number	Dual Address	Single Address	Dual I/O	Separate I/O
MCM69D536	~	Note 1	\checkmark	Note 2
MCM69D618	~	Note 1	\checkmark	Note 2
MCM69Q536		/		~
MCM69Q618		/		/
MCM67Q709		/		/
MCM67Q909		/		1


NOTES:

1. Tie AX and AY address ports together for the part to function as a single address part.

2. Tie GX high for DQX to be inputs and tie WY high and GY low for DQY to be outputs.


This document contains information on a new product. Specifications and information herein are subject to change without notice.

REV 5 11/24/97

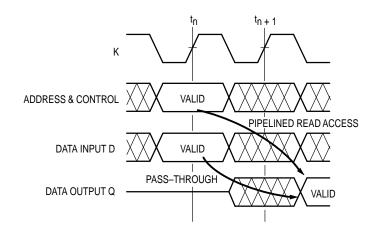
PIN ASSIGNMENT

PIN DESCRIPTIONS

Pin Locations	Symbol	Туре	Description
30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 81, 83, 85, 98, 100	A0 – A15	Input	Synchronous Address Inputs: These inputs are registered and must meet setup and hold times.
3, 5, 9, 11, 16, 18, 22, 24, 28, 52, 56, 58, 62, 64, 69, 71, 75, 77	D0 – D17	Input	Synchronous Data Input.
90	E1	Input	Synchronous Chip Enable: Active low for depth expansion.
91	E2	Input	Synchronous Chip Enable: Active high for depth expansion.
92	G	Input	Asynchronous Output Enable Input: Low — enables output buffers (Qx pins). High — Qx pins are high impedance.
96	К	Input	Clock: This signal registers the address, data in, and all control signals except G.
86	PT	Input	Pass-through enable: Synchronous.
4, 6, 10, 12, 15, 17, 21, 23, 27, 53, 57, 59, 63, 65, 68, 70, 74, 76	Q0 – Q17	Output	Synchronous Data Output.
88	W	Input	Synchronous Write.
1, 7, 13, 19, 25, 41, 54, 60, 66, 72, 78, 95	V _{DD}	Supply	+ 3.3 V Power Supply.
2, 8, 14, 20, 26, 55, 61, 67, 73, 79, 94	V _{SS}	Supply	Ground.
29, 31, 33, 35, 37, 39, 43, 45, 47, 49, 51, 80, 82, 84, 87, 89, 93, 97, 99	NC	—	No Connection: There is no connection to the chip.

TRUTH TABLE

	Input at t _n Clock				lock	Result from t _{n + 1} Clock	Notes
Operation	E1	E2	w	PT	Data Input D	Data Output Q	
Write and Pass–Through	L	Н	L	L	D written to A	D data appears	1
Write/Read	L	Н	L	Н	D written to A	Q out from A	2
Pass–Through	L	Н	Н	L	D data	D data appears	3
Read	L	Н	Н	Н	Don't Care	Q out from A	4
Deselected	Х	L	Х	Х	Don't Care	Q is high–Z	5
Deselected	Н	Х	Х	Х	Don't Care	Q is high–Z	6


NOTES:

Write D to array and output D at Q.
 Output contents of array to Q then write D to array.

3. Output D at Q. Do not write.

4. Output contents of array to Q. Do not write.5. No operation.

6. No operation.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{DD}	– 0.5 to + 4.6	V
Voltage Relative to V _{SS} for Any Pin Except V _{DD}	V _{in} , V _{out}	– 0.5 to V _{DD} + 0.5	V
Output Current	l _{out}	± 20	mA
Power Dissipation	PD	TBD	W
Temperature Under Bias	T _{bias}	– 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	– 55 to + 125	°C

This is a synchronous device. All synchronous inputs must meet specified setup and hold times with stable logic levels for *ALL* rising edges of clock (K) while the device is selected.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high–impedance circuits.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (See Note 1)

Rating		Symbol	TQFP	Unit	Notes
Junction to Ambient (@ 200 lfm)	Single Layer Board Four Layer Board	R _{θJA}	40 25	°C/W	2
Junction to Board (Bottom)		$R_{\theta J B}$	17	°C/W	3
Junction to Case (Top)		$R_{ extsf{ heta}JC}$	9	°C/W	4

NOTES:

1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, board population, and board thermal resistance.

2. Per SEMI G38-87.

3. Indicates the average thermal resistance between the die and the printed circuit board.

4. Indicates the average thermal resistance between the die and the case top surface via the cold plate method (MIL SPEC-883 Method 1012.1).

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{DD} = 3.3 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Max	Unit	
Supply Voltage (Operating Voltage Range)		V _{DD}	3.135	3.465	V
Input High Voltage		VIH	2.0	V _{DD} + 0.5**	V
Input Low Voltage		VIL	- 0.5*	0.8	V
Input Leakage Current (All Inputs, $V_{in} = 0$ to V_{DD})	I _{lkg(I)}	_	± 1.0	μΑ	
Output Leakage Current (E = V_{IH} , V_{out} = 0 to V_{DD})		I _{lkg(O)}	_	± 1.0	μΑ
AC Supply Current (I _{out} = 0 mA) (V _{DD} = max, f = f _{max})	MCM69Q618–6 ns MCM69Q618–8 ns MCM69Q618–10 ns	IDDA		TBD TBD TBD	mA
$\begin{array}{l} \mbox{CMOS Standby Supply Current (Deselected, Clock (K) \\ \mbox{Cycle Time} \geq t_{KHKH}, \mbox{All Inputs Toggling at CMOS Levels} \\ \mbox{V}_{in} \leq V_{SS} + 0.2 \ \mbox{V or } \geq V_{DD} - 0.2 \ \mbox{V} \end{array}$	MCM69Q618–6 ns MCM69Q618–8 ns MCM69Q618–10 ns	I _{SB1}		TBD TBD TBD	mA
Output Low Voltage (I _{OL} = + 8.0 mA)		V _{OL}	—	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)		VOH	2.4	V _{DD}	V

 $\label{eq:VIL} \begin{array}{l} {}^{*} V_{IL} \geq -1.5 \ V \ \text{for} \ t \leq t_{KHKH}/2. \\ {}^{**} V_{IH} \leq V_{DD} + 1.0 \ V \ \text{for} \ t \leq t_{KHKH}/2. \end{array}$

$\textbf{CAPACITANCE} (f = 1.0 \text{ MHz}, \text{dV} = 3.0 \text{ V}, \text{T}_{A} = 0 \text{ to } 70^{\circ}\text{C}, \text{Periodically Sampled Rather Than } 100\% \text{ Tested})$

Parameter	Symbol	Max	Unit
Address and Data Input Capacitance	C _{in}	6	pF
Control Pin Input Capacitance	C _{in}	6	pF
Output Capacitance	Cout	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{DD} = 3.3 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	3 ns

READ/WRITE CYCLE TIMING

			MCM69Q618-6		MCM69	Q618–8	MCM69	Q618–10		
Parame	eter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Time		^t КНКН	12	—	15	—	20	—	ns	1
Clock Access Time		^t KHQ∨	—	6	—	8	—	10	ns	2
Clock Low Pulse Wi	dth	^t KLKH	4	—	6	—	8	—	ns	
Clock High Pulse Wi	idth	^t KHKL	4	—	6	—	8	—	ns	
Clock High to Data C	Output Invalid	^t KHQX	0	—	0	—	0	—	ns	
Clock High to Data C	Dutput High–Z	^t KHQZ	—	5	—	6	—	7	ns	3
Output Enable to Ou	utput Valid	^t GLQV	_	6	—	8	—	10	ns	
Output Enable to Ou	tput Active	^t GLQX	0	—	0	—	0	—	ns	3
Output Disable to Output	utput High–Z	^t GHQZ	_	5	—	6	—	7	ns	3
Setup Times:	A0 – A <u>15</u> <u>W</u> PT E1, E2 D0 – D17	^t AVKH ^t WVKH ^t PTVKH ^t EVKH ^t DVKH	2.5	_	3	_	3	_	ns	4
Hold Times:	A0 – A <u>15</u> <u>W</u> PT E1, E2 D0 – D17	^t KHAX ^t KHWX ^t KHPTX ^t KHEX ^t KHDX	0.5		2		2		ns	4

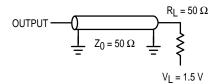
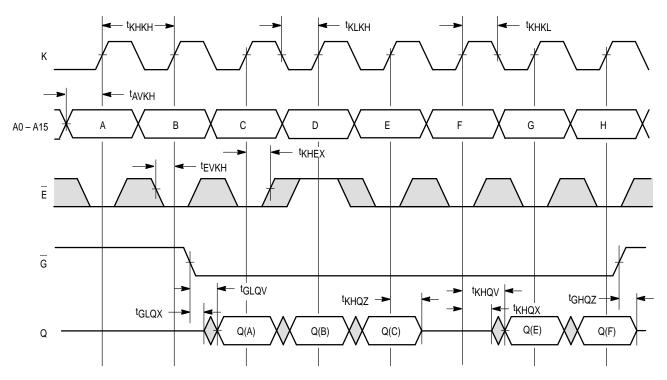
NOTES:

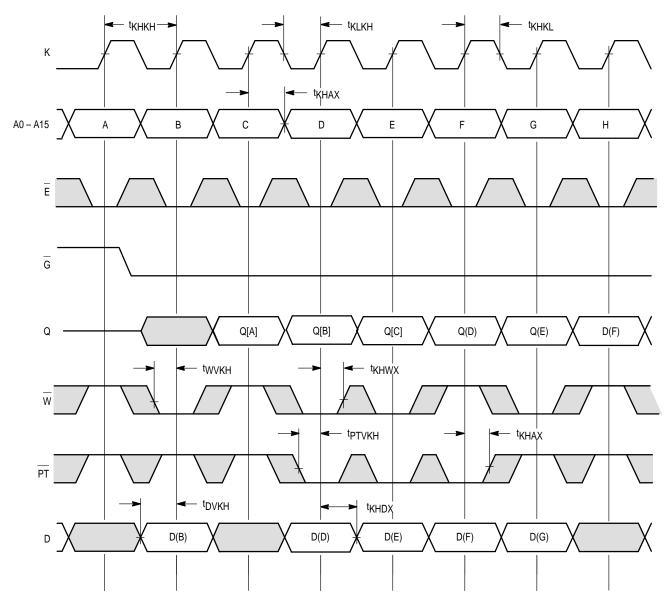
1. All read and write cycles are referenced from K.

2. Valid data from Clock High will be the data stored at the address or the last valid read cycle.

3. This parameter is sampled and not 100% tested.

4. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for *ALL* rising edges of clock (K) while the device is selected.

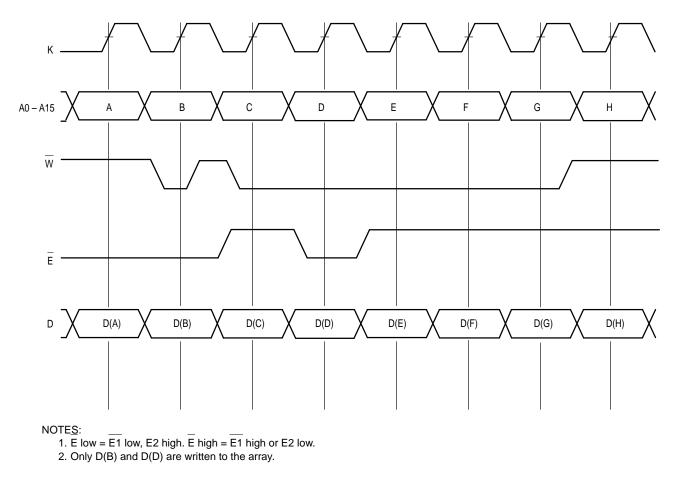




Figure 1. AC Test Load

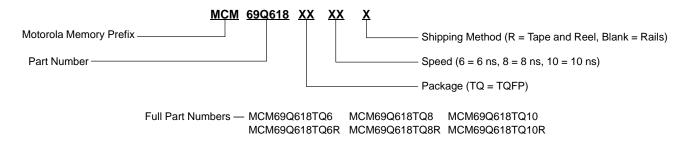
READ CYCLE TIMING

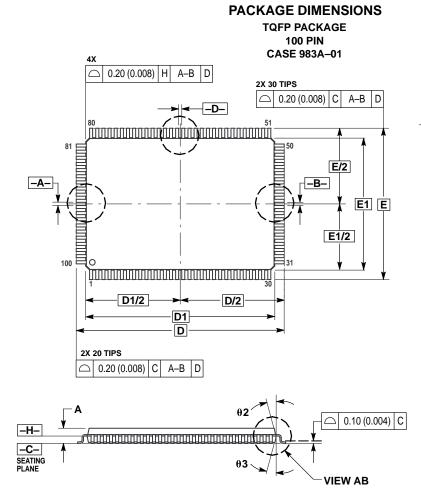
 \overline{E} low = $\overline{E1}$ low, E2 high. \overline{E} high = $\overline{E1}$ high or E2 low.

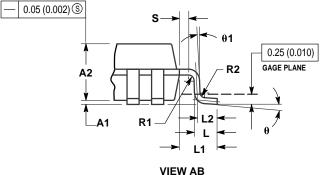
COMBINATION READ/WRITE CYCLE TIMING

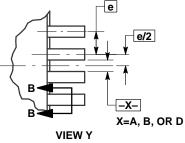


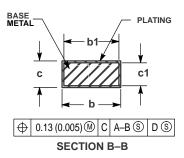
NOTES:


E low = E1 low and E2 high. E high = E1 high or E2 low.
 Q[A] = Previous contents of array at address A.


3. Q(A) = Data presented at input port.


E CONTROLLED WRITE




ORDERING INFORMATION (Order by Full Part Number)

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
 4. DATUMS -A-, -B- AND -D- TO BE DETERMINED AT DATUM PLANE -H-.
 5. DIMENSIONS D AND E TO BE DETERMINED AT SEATING PLANE -C-.
- SEATING PLANE -C-. 6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD
- PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. JIMENSIONS D1 AND B1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE & DIMENSION TO EXCEED 0.45 7. (0.018).

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α		1.60		0.063
A1	0.05	0.15	0.002	0.006
A2	1.35	1.45	0.053	0.057
b	0.22	0.38	0.009	0.015
b1	0.22	0.33	0.009	0.013
С	0.09	0.20	0.004	0.008
c1	0.09	0.16	0.004	0.006
D	22.00	BSC	0.866	BSC
D1	20.00	BSC	0.787	BSC
Е	16.00	BSC	0.630	BSC
E1	14.00	BSC	0.551	BSC
е	0.65	BSC	0.026	BSC
L	0.45	0.75	0.018	0.030
L1	1.00	REF	0.039	REF
L2	0.50	REF	0.020	REF
S	0.20		0.008	
R1	0.08		0.003	
R2	0.08	0.20	0.003	0.008
θ	0 °	7°	0 °	7°
θ1	0 °		0 °	
θ2	11 °	13 °	11 °	13°
θ3	11 °	13 °	11 °	13°

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (**A**) are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employee.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado, 80217. 1-303-675-2140 or 1-800-441-2447

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609 Motorola Fax Back System - US & Canada ONLY 1-800-774-1848 - http://sps.motorola.com/mfax/

 \Diamond

HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shagawa-ku, Tokyo, Japan. 03-5487-8488

TOUCHTONE 1-602-244-6609
 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
 US & Canada ONLY 1-800-774-1848
 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

CUSTOMER FOCUS CENTER: 1-800-521-6274

