Quad Latch

The MC10153 is a high speed, low power, MECL quad latch consisting of four bistable latch circuits with D type inputs and gated Q outputs. Open emitters allow a large number of outputs to be wire-ORed together. Latch outputs are gated, allowing direct wiring to a bus. When the clock is low, outputs will follow D inputs. Information is latched on positive going transition of the clock. The MC10153 provides the same logic function as the MC10133, except for inversion of the clock.
$P_{D}=310 \mathrm{~mW}$ typ/pkg (No Load)
$t_{p d}=4.0 \mathrm{~ns}$ typ
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$ typ $(20 \%-80 \%)$

LOGIC DIAGRAM

TRUTH TABLE

\bar{G}	C	D	Q_{n+1}
H	X	X	L
L	H	X	Q_{n}
L	L	L	L
L	L	H	H

$C=C_{C}+C E$

DIP
PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 6-11 of the Motorola MECL Data Book (DL122/D).

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Pin Under Test	Test Limits							Unit
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		
			Min	Max	Min	Typ	Max	Min	Max	
Power Supply Drain Current	I_{E}	8		83			75		83	mAdc
Input Current	linH	$\begin{gathered} \hline 3 \\ 4 \\ 5 \\ 13 \end{gathered}$		$\begin{aligned} & 390 \\ & 390 \\ & 560 \\ & 460 \end{aligned}$			$\begin{aligned} & 245 \\ & 245 \\ & 350 \\ & 290 \end{aligned}$		$\begin{aligned} & 245 \\ & 245 \\ & 350 \\ & 290 \end{aligned}$	$\mu \mathrm{Adc}$
	linL	3	0.5		0.5			0.3		$\mu \mathrm{Adc}$
Output Voltage Logic 1	V_{OH}	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline-1.060 \\ & -1.060 \end{aligned}$	$\begin{aligned} & \hline-0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & \hline-0.960 \\ & -0.960 \end{aligned}$		$\begin{aligned} & -0.810 \\ & -0.810 \end{aligned}$	$\begin{aligned} & \hline-0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & \hline-0.700 \\ & -0.700 \end{aligned}$	Vdc
Output Voltage Logic 0	V OL	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline-1.890 \\ & -1.890 \\ & -1.890 \end{aligned}$	$\begin{aligned} & \hline-1.675 \\ & -1.675 \\ & -1.675 \end{aligned}$	$\begin{aligned} & \hline-1.850 \\ & -1.850 \\ & -1.850 \end{aligned}$		$\begin{aligned} & -1.650 \\ & -1.650 \\ & -1.650 \end{aligned}$	$\begin{aligned} & \hline-1.825 \\ & -1.825 \\ & -1.825 \end{aligned}$	$\begin{aligned} & -1.615 \\ & -1.615 \\ & -1.615 \end{aligned}$	Vdc
Threshold Voltage Logic 1	V ${ }_{\text {OHA }}$	$\begin{gathered} 2 \\ 2 \\ 2 \\ 2 \dagger \\ 2 \ddagger \\ 2 \ddagger \\ 2 \ddagger \\ 2 \\ 2 \end{gathered}$	$\begin{aligned} & -1.080 \\ & -1.080 \\ & -1.080 \\ & -1.080 \\ & -1.080 \\ & -1.080 \\ & -1.080 \\ & -1.080 \end{aligned}$		$\begin{aligned} & -0.980 \\ & -0.980 \\ & -0.980 \\ & -0.980 \\ & -0.980 \\ & -0.980 \\ & -0.980 \\ & -0.980 \end{aligned}$			$\begin{aligned} & -0.910 \\ & -0.910 \\ & -0.910 \\ & -0.910 \\ & -0.910 \\ & -0.910 \\ & -0.910 \\ & -0.910 \end{aligned}$		Vdc
Threshold Voltage Logic 0	$\mathrm{V}_{\text {OLA }}$	$\begin{gathered} 2 \\ 2 \\ 2 \\ 2 \dagger \\ 2 \ddagger \\ 2 \ddagger \\ 2 \ddagger \end{gathered}$		$\begin{aligned} & \hline-1.655 \\ & -1.655 \\ & -1.655 \\ & -1.655 \\ & -1.655 \\ & -1.655 \end{aligned}$			$\begin{aligned} & \hline-1.630 \\ & -1.630 \\ & -1.630 \\ & -1.630 \\ & -1.630 \\ & -1.630 \end{aligned}$		$\begin{aligned} & -1.595 \\ & -1.595 \\ & -1.595 \\ & -1.595 \\ & -1.595 \\ & -1.595 \end{aligned}$	Vdc
Switching Times (50Ω Load)										ns
Propagation Delay	t_{3+2+} t4-2+ t5-2+ ${ }^{\mathrm{t}}$ setup thold	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.6 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 2.0 \\ & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.6 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.0 \\ & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 6.2 \\ & 3.4 \end{aligned}$	
Rise Time (20 to 80\%)	t_{2+}	2	1.0	3.6	1.1	2.0	3.5	1.1	3.8	
Fall Time (20 to 80\%)	t_{2}	2	1.0	3.6	1.1	2.0	3.5	1.1	3.8	

\dagger Output level to be measured after a clock pulse has been applied to the clock input (Pin 4)

末 Data input at proper high/low level while clock pulse is high so that device latches ar proper high/low level for test. Levels are measured after device has latched.

* Latch set to zero state before test.

ELECTRICAL CHARACTERISTICS (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{\multirow[b]{2}{*}{@ Test Temperature}} \& \multicolumn{5}{|c|}{TEST VOLTAGE VALUES (Volts)} \& \multirow[b]{7}{*}{$$
\begin{gathered}
(\mathrm{VCC}) \\
\mathrm{Gnd}
\end{gathered}
$$}

\hline \& \& \& \& $\mathrm{V}_{\text {IHmax }}$ \& $\mathrm{V}_{\text {ILImin }}$ \& $\mathrm{V}_{\text {IHAmin }}$ \& VILAmax \& V_{EE} \&

\hline \& \& \& \multirow[t]{3}{*}{$$
\begin{aligned}
& -30^{\circ} \mathrm{C} \\
& +25^{\circ} \mathrm{C} \\
& +85^{\circ} \mathrm{C}
\end{aligned}
$$} \& -0.890 \& -1.890 \& -1.205 \& -1.500 \& -5.2 \&

\hline \& \& \& \& -0.810 \& -1.850 \& -1.105 \& -1.475 \& -5.2 \&

\hline \& \& \& \& -0.700 \& -1.825 \& -1.035 \& -1.440 \& -5.2 \&

\hline \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Characteristic}} \& \multirow[b]{2}{*}{Symbol} \& \multirow[t]{2}{*}{Pin Under Test} \& \multicolumn{5}{|l|}{TEST VOLTAGE APPLIED TO PINS LISTED BELOW} \&

\hline \& \& \& \& $\mathrm{V}_{\text {IHmax }}$ \& $\mathrm{V}_{\text {ILImin }}$ \& $\mathrm{V}_{\text {IHAmin }}$ \& VILAmax \& V_{EE} \&

\hline \multicolumn{2}{|l|}{Power Supply Drain Current} \& IE \& 8 \& \& 13 \& \& \& 8 \& 1,16

\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{Input Current}} \& \multirow[t]{4}{*}{linH} \& 3 \& 3 \& \& \& \& 8 \& 16

\hline \& \& \& 4 \& 4 \& \& \& \& 8 \& 1,16

\hline \& \& \& 5 \& 5 \& \& \& \& 8 \& 1,16

\hline \& \& \& 13 \& 13 \& \& \& \& 8 \& 1,16

\hline \& \& linL \& 3 \& \& 3 \& \& \& 8 \& 1,16

\hline Output Voltage \& Logic 1 \& V_{OH} \& $$
\begin{aligned}
& 2 \\
& 2
\end{aligned}
$$ \& $$
\begin{aligned}
& 3 \\
& 3
\end{aligned}
$$ \& $$
\begin{gathered}
\hline 4 \\
13
\end{gathered}
$$ \& \& \& $$
\begin{aligned}
& 8 \\
& 8
\end{aligned}
$$ \& $$
\begin{aligned}
& \hline 1,16 \\
& 1,16
\end{aligned}
$$

\hline Output Voltage \& Logic 0 \& V_{OL} \& $$
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
$$ \& 3,5 \& $$
\begin{gathered}
3,13 \\
13 \\
3,4
\end{gathered}
$$ \& \& \& 8
8
8 \& $$
\begin{aligned}
& 1,16 \\
& 1,16 \\
& 1,16
\end{aligned}
$$

\hline \multirow[t]{8}{*}{Threshold Voltage} \& \multirow[t]{8}{*}{Logic 1} \& \multirow[t]{8}{*}{V OHA} \& 2 \& 3 \& 4 \& \& 5 \& 8 \& 1, 16

\hline \& \& \& 2 \& \& 4 \& 3 \& \& 8 \& 1,16

\hline \& \& \& 2 \& 3 \& 4 \& \& \& 8 \& 1,16

\hline \& \& \& $2 \dagger$ \& 3 \& \& \& \& 8 \& 1,16

\hline \& \& \& 2\$ \& \& \& \& \& 8 \& 1,16

\hline \& \& \& 2 \& \& \& \& \& 8 \& 1,16

\hline \& \& \& 2 \& 3 \& \& \& 4 \& 8 \& 1,16

\hline \& \& \& 2 \& 3 \& \& \& 13 \& 8 \& 1,16

\hline \multirow[t]{6}{*}{Threshold Voltage} \& \multirow[t]{6}{*}{Logic 0} \& \multirow[t]{6}{*}{$\mathrm{V}_{\text {OLA }}$} \& 2 \& \multirow[t]{6}{*}{3

3
3} \& 4 \& \multirow[t]{6}{*}{5} \& \multirow{5}{*}{3} \& 8 \& 1,16

\hline \& \& \& 2 \& \& 4 \& \& \& 8 \& 1,16

\hline \& \& \& 2 \& \& \multirow[t]{4}{*}{} \& \& \& 8 \& 1,16

\hline \& \& \& $2 \dagger$ \& \& \& \& \& 8 \& 1,16

\hline \& \& \& 2\$ \& \& \& \& \& 8 \& 1,16

\hline \& \& \& 2\% \& \& \& \& 13 \& 8 \& 1,16

\hline Switching Times \& (50, Load) \& \& \& +1.11 V \& \& Pulse In \& Pulse Out \& -3.2 V \& +2.0 V

\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{Propagation Delay}} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& \mathrm{t}_{3+2+} \\
& \mathrm{t}_{4-2+} \\
& \mathrm{t}_{5-2+} \\
& \mathrm{t}_{\text {setup }} \\
& \text { thold }
\end{aligned}
$$} \& 2 \& \multirow{7}{*}{3*} \& \& 3 \& 2 \& 8 \& 1,16

\hline \& \& \& 2 \& \& \& 4 \& 2 \& 8 \& 1,16

\hline \& \& \& 2 \& \& \& 5 \& 2 \& 8 \& 1, 16

\hline \& \& \& 3 \& \& \& 3 \& 2 \& 8 \& 1,16

\hline \& \& \& 3 \& \& \& 3 \& 2 \& 8 \& 1,16

\hline Rise Time \& (20 to 80\%) \& t_{2+} \& 2 \& \& \& 3 \& 2 \& 8 \& 1,16

\hline Fall Time \& (20 to 80\%) \& t_{2} \& 2 \& \& \& 3 \& 2 \& 8 \& 1, 16

\hline
\end{tabular}

\dagger Output level to be measured after a clock pulse has been applied to the clock input (Pin 4) \square
\$ Data input at proper high/low level while clock pulse is high so that device latches ar proper high/low level for test. Levels are measured after device has latched.

* Latch set to zero state before test.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a $50-$ ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

OUTLINE DIMENSIONS

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and $\mathbb{M})$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 602-244-6609 ~}$
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

