9+2-Bit Parity Generator/ Checker

The MC10170 is a 11-bit parity circuit, which is segmented into 9 data bits and 2 control bits.

Output A generates odd parity on 9 bits; that is, Output A goes high for an odd number of high logic levels on the bit inputs in only 2 gate delays.

The Control Inputs can be used to expand parity to larger numbers of bits with minimal delay or can be used to generate even parity. To expand parity to larger words, the MC10170 can be used with the MC10160 or other MC10170's. The MC10170 can generate both even and odd parity.

$$
\begin{aligned}
\mathrm{PD}_{\mathrm{P}=} & 300 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}}= & 2.5 \mathrm{~ns} \text { typ(Control Inputs to B Output) }) \\
& 4.0 \mathrm{~ns} \text { typ (Data Inputs to A Output) } \\
& 6.0 \text { ns typ (Data Inputs to B Output) } \\
\mathrm{tr}_{\mathrm{r}}, \mathrm{tf}_{\mathrm{f}}= & 2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
$$

LOGIC DIAGRAM

PIN ASSIGNMENT

INPUTS	OUTPUTS	
Sum of D Inputs at High Level	Odd Parity	Even Parity
	Output A	Output B
Even	Low	High
Odd	High	Low

MC10170

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Pin Under Test	Test Limits							Unit
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		
			Min	Max	Min	Typ	Max	Min	Max	
Power Supply Drain Current	IE	8		78		57	71		78	mAdc
Input Current	$l \mathrm{linH}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		$\begin{aligned} & 350 \\ & 350 \end{aligned}$			$\begin{aligned} & 200 \\ & 220 \end{aligned}$		$\begin{aligned} & 220 \\ & 220 \end{aligned}$	$\mu \mathrm{Adc}$
	$\mathrm{l}_{\mathrm{inL}}$	3	0.5		0.5			0.3		$\mu \mathrm{Adc}$
Output Voltage Logic 1	V_{OH}	$\begin{gathered} 2 \\ 15 \end{gathered}$	$\begin{aligned} & \hline-1.060 \\ & -1.060 \end{aligned}$	$\begin{aligned} & -0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & -0.960 \\ & -0.960 \end{aligned}$		$\begin{aligned} & -0.810 \\ & -0.810 \end{aligned}$	$\begin{aligned} & -0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & -0.700 \\ & -0.700 \end{aligned}$	Vdc
Output Voltage Logic 0	V_{OL}	$\begin{gathered} 2 \\ 15 \end{gathered}$	$\begin{aligned} & -1.890 \\ & -1.890 \end{aligned}$	$\begin{aligned} & -1.675 \\ & -1.675 \end{aligned}$	$\begin{aligned} & -1.850 \\ & -1.850 \end{aligned}$		$\begin{aligned} & -1.650 \\ & -1.650 \end{aligned}$	$\begin{aligned} & -1.825 \\ & -1.825 \end{aligned}$	$\begin{aligned} & -1.615 \\ & -1.615 \end{aligned}$	Vdc
Threshold Voltage Logic 1	$\mathrm{V}_{\text {OHA }}$	$\begin{gathered} 2 \\ 15 \end{gathered}$	$\begin{aligned} & -1.080 \\ & -1.080 \end{aligned}$		$\begin{aligned} & -0.980 \\ & -0.980 \end{aligned}$			$\begin{aligned} & -0.910 \\ & -0.910 \end{aligned}$		Vdc
Threshold Voltage Logic 0	V ${ }_{\text {OLA }}$	$\begin{gathered} 2 \\ 15 \end{gathered}$		$\begin{aligned} & -1.655 \\ & -1.655 \end{aligned}$			$\begin{aligned} & -1.630 \\ & -1.630 \end{aligned}$		$\begin{aligned} & -1.595 \\ & -1.595 \end{aligned}$	Vdc
Switching Times (50Ω Load) Propagation Delay Rise Time (20 to 80\%) Fall Time (20 to 80\%)	$\begin{gathered} \mathrm{t}_{13+15+} \\ \mathrm{t}_{14-15-} \\ \mathrm{t}_{3+2-} \\ \mathrm{t}_{3-15+} \\ \mathrm{t}_{2+} \\ \mathrm{t}_{2}- \end{gathered}$	$\begin{gathered} 15 \\ 15 \\ 2 \\ 15 \\ 2 \\ 2 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 2.0 \\ & 4.0 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.2 \\ & 6.6 \\ & 9.5 \\ & 4.3 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 2.0 \\ & 4.0 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 4.0 \\ & 6.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 6.0 \\ & 8.8 \\ & 3.9 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 2.0 \\ & 4.0 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 4.4 \\ & 6.6 \\ & 9.5 \\ & 4.3 \\ & 4.3 \end{aligned}$	ns

ELECTRICAL CHARACTERISTICS (continued)

	@ Test Temperature		TEST VOLTAGE VALUES (Volts)					$\left(\begin{array}{c} \left(V_{\mathrm{CC}}\right) \\ \text { Gnd } \end{array}\right.$
			$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILImin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	$\mathrm{V}_{\text {EE }}$	
		$-30^{\circ} \mathrm{C}$	-0.890	-1.890	-1.205	-1.500	-5.2	
		$+25{ }^{\circ} \mathrm{C}$	-0.810	-1.850	-1.105	-1.475	-5.2	
		$+85{ }^{\circ} \mathrm{C}$	-0.700	-1.825	-1.035	-1.440	-5.2	
Characteristic	Symbol	Pin Under Test	TEST VOLTAGE APPLIED TO PINS LISTED BELOW					
			$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILImin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	$V_{\text {EE }}$	
Power Supply Drain Current	IE	8						1,16
Input Current	$l \mathrm{inH}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	3 5				$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{l}_{\mathrm{inL}}$	3		3			8	1,16
Output Voltage Logic 1	V_{OH}	$\begin{gathered} 2 \\ 15 \end{gathered}$	$\begin{gathered} 3,4,5 \\ 14 \end{gathered}$				$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Output Voltage Logic 0	V_{OL}	$\begin{gathered} 2 \\ 15 \end{gathered}$	$\begin{gathered} 4,5 \\ 13,14 \end{gathered}$				$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Threshold Voltage Logic 1	$\mathrm{V}_{\mathrm{OHA}}$	$\begin{gathered} 2 \\ 15 \end{gathered}$			$\begin{gathered} 5 \\ 13 \end{gathered}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Threshold Voltage Logic 0	$\mathrm{V}_{\text {OLA }}$	$\begin{gathered} 2 \\ 15 \end{gathered}$				$\begin{gathered} 5 \\ 13 \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Switching Times (50 Load)	$\begin{gathered} \mathrm{t}_{13+15+} \\ \mathrm{t}_{14-15-} \\ \mathrm{t}_{3+2-} \\ \mathrm{t}_{3}-15+ \\ \mathrm{t}_{2+} \\ \mathrm{t}_{2-} \\ \hline \end{gathered}$				Pulse In	Pulse Out	-3.2 V	+2.0
Propagation Delay		$\begin{gathered} 15 \\ 15 \\ 2 \\ 15 \end{gathered}$			13 14 3 3	$\begin{gathered} 15 \\ 15 \\ 2 \\ 15 \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \end{aligned}$
Rise Time (20 to 80\%)		2			3	2	8	1,16
Fall Time (20 to 80\%)		2			3	2	8	1,16

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (4) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MOTOROLA

