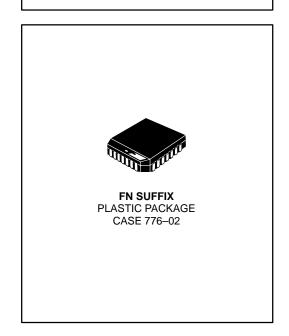

Dual Supply ECL-TTL 1:8 Clock Driver

The MC10H/100H643 is a dual supply, low skew translating 1:8 clock driver. Devices in the Motorola H600 translator series utilize the 28–lead PLCC for optimal power pinning, signal flow through and electrical performance. The dual–supply H643 is similar to the H641, which is a single–supply 1:9 version of the same function.

The device features a 48mA TTL output stage, with AC performance specified into a 50pF load capacitance. A Latch is provided on-chip. When LEN is LOW (or left open, in which case it is pulled LOW by the internal pulldowns) the latch is transparent. A HIGH on the enable pin (EN) forces all outputs LOW.

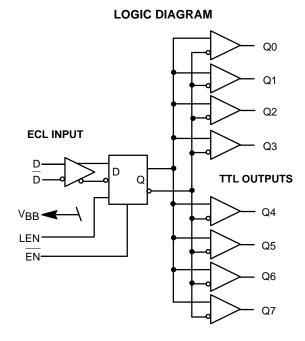
The 10H version is compatible with MECL 10H $^{\rm TM}$ ECL logic levels. The 100H version is compatible with 100K levels.


- ECL/TTL Version of Popular ECLinPS™ E111
- Low Skew Within Device 0.5ns
- Guaranteed Skew Spec Part-to-Part 1.0ns
- Latch
- Differential Internal Design
- V_{BB} Output
- Dual Supply
- Reset/Enable
- Multiple TTL and ECL Power/Ground Pins

ECLinPS and MECL 10H are trademarks of Motorola, Inc.

MC10H643 MC100H643

DUAL SUPPLY ECL-TTL 1:8 CLOCK DRIVER



PIN NAMES

PIN	FUNCTION
OGND	TTL Output Ground (0V)
OVT	TTL Output V _{CC} (+5.0V)
IGND	Internal TTL GND (0V)
IVT	Internal TTL V _{CC} (+5.0V)
VEE	ECL V _{EE} (-5.2/-4.5V)
VCCE	ECL Ground (0V)
D, D	Signal Input (ECL)
VBB	V _{BB} Reference Output
<u>Q0</u> -Q7	Signal Outputs (TTL)
EN	Enable Input (ECL)
LEN	Latch Enable Input (ECL)

11/93

DC CHARACTERISTICS (IVT = OVT = $5.0V \pm 5\%$; V_{EE} = $-5.2V \pm 5\%$ (10H Version); V_{EE} = $-4.5V \pm 0.3V$ (100H Version))

			0°C		25°C		85°C			
Symbol	Characteristic	;	Min	Max	Min	Max	Min	Max	Unit	Condition
IEE		ECL	-	42	-	42	-	42	mA	V _{EE} Pins
ICCL	Power Supply Current	TTL	-	106	-	106	-	106	mA	Total all OVT
ІССН			-	95	-	95	-	95	mA	and IVT pins

				. ,,				// UOL	
		0°C		25°C		85°C			
Symbol	Characteristic	Min	Max	Min	Мах	Min	Max	Unit	Condition
^t PLH	Propagation Delay to Output D <u>LE</u> N EN	4.0 3.5 3.5	5.0 5.5 5.5	4.1 3.5 3.5	5.1 5.5 5.5	4.4 3.9 3.9	5.4 5.9 5.9	ns	CL = 50pF
t _{SKEW}	Within–Device Skew	-	0.5	-	0.5		0.5	ns	Note 1
tw	Pulse Width Out HIGH or LOW @ f _{out} = 50MHz	9.0	11.0	9.0	11.0	9.0	11.0	ns	CL = 50pF Note 2
t _S	Setup Time D	0.75	-	0.75	-	0.75	-	ns	
^t h	Hold Time D	0.75	-	0.75	-	0.75	-	ns	
t _{RR}	Recovery Time LEN EN	1.25 1.25		1.25 1.25		1.25 1.25	-	ns	
t _{pw}	Minimum Pulse Width LEN EN	1.5 1.5		1.5 1.5		1.5 1.5		ns	
t _r t _f	Rise / Fall Times 0.8 V – 2.0 V	_	1.2	_	1.2	-	1.2	ns	CL = 50pF

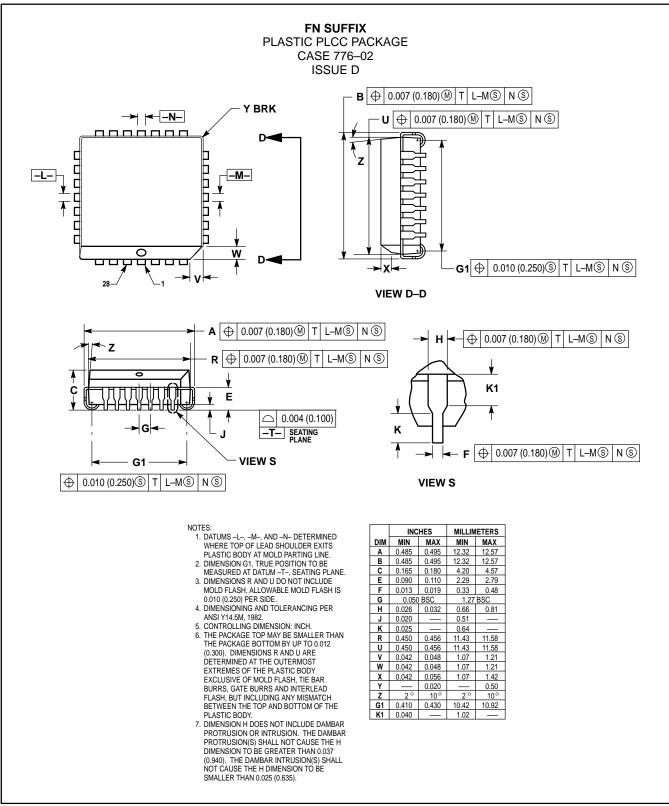
Within–Device skew defined as identical transitions on similar paths through a device.
Pulse width is defined relative to 1.5V measurement points on the ouput waveform.

TRUTH TABLE

D	LEN	EN	Q
L H X X	LLHX		грдг

DC CHARACTERISTICS (IVT = OVT = $5.0V \pm 5\%$; V_{EE} = $-5.2V \pm 5\%$ (10H Version); V_{EE} = $-4.5V \pm 0.3V$ (100H Version))

		O°C		25°C		85°C			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
VOH	Output HIGH Voltage	2.5 2.0		2.5 2.0		2.5 2.0	-	V	I _{OH} = -3.0mA I _{OH} = -15mA
V _{OL}	Output LOW Voltage	-	0.5	-	0.5	-	0.5	V	I _{OH} = 48mA
IOS	Output Short Circuit Current	-100	-225	-100	-225	-100	-225	mA	V _{OUT} = 0V


10H DC CHARACTERISTICS (IVT = OVT = 5.0V ±5%; V_{EE} = -5.2V ±5% (10H Version); V_{EE} = -4.5V ±0.3V (100H Version))

		0°C		25°C		85°C			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
IIH IIL	Input HIGH Current Input LOW Current	_ 0.5	225 -	_ 0.5	175 -	_ 0.5	175 -	μΑ	
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage	-1170 -1950	-840 -1480	-1130 -1950	810 1480	-1070 -1950	-735 -1450	mV	
V _{BB}	Output Reference Voltage	-1380	-1270	-1350	-1250	-1310	-1190	mV	

100H DC CHARACTERISTICS (IVT = OVT = 5.0V \pm 5%; V_{EE} = -5.2V \pm 5% (10H); V_{EE} = -4.5V \pm 0.3V (100H))

		O°C		25°C		85°C			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
liH li∟	Input HIGH Current Input LOW Current	_ 0.5	225 -	_ 0.5	175 -	_ 0.5	175 -	μΑ	
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage	-1165 -1810	-880 -1475	-1165 -1810	-880 -1475	-1165 -1810	880 1475	mV	
V _{BB}	Output Reference Voltage	-1380	-1260	-1380	-1260	-1380	-1260	mV	

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **(A)** are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

٥

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

