Dual 1.1 GHz PLL Frequency Synthesizer BiCMOS

The MC145220 is a low-voltage, single-chip frequency synthesizer with serial interface capable of direct usage up to 1.1 GHz . The device simultaneously supports two loops. The two on-chip dual-modulus prescalers may be independently programmed to divide by either $32 / 33$ or 64/65.
The device consists of two dual-modulus prescalers, two 6-stage A counters, two 12 -stage N counters, two fully programmable 13-stage R (reference) counters, and two lock detectors. Four phase/frequency detectors are included: two with current source/sink outputs and two with double-ended outputs.

The counters are programmed via a synchronous serial port which is SPI compatible. The serial port is byte-oriented to facilitate control via an MCU. Due to the innovative BitGrabber Plus ${ }^{\text {TM }}$ registers, the MC145220 may be cascaded with other peripherals featuring BitGrabber Plus without requiring leading dummy bits or multiple address bits in the serial data stream. In addition, BitGrabber Plus peripherals may be cascaded with existing BitGrabber ${ }^{\text {TM }}$ peripherals. Because this device is a dual synthesizer, a single steering bit is used in the serial data stream to direct the data to either side of the chip.
The phase/frequency detectors have linear transfer functions (no dead zones). The current delivered by the current source/sink outputs is controllable via the serial port.
Also featured are low-power standby for either one or both loops and on-board support of an external crystal. In addition, the part may be configured such that the REFin pin accepts an external reference signal. In this configuration, the REF out pin may be programmed to output the REFin frequency divided by $1,2,4,8$, or 16.

- Operating Frequency: 40 to 1100 MHz
- Operating Supply Voltage Range: 2.7 to 5.5 V
- Supply Current: Both PLLs Operating - 12 mA Nominal

One PLL Operating, One on Standby - 6.5 mA Nominal Both PLLs on Standby - 30μ A Maximum

- Phase Detector Output Current: Up to $2 \mathrm{~mA} @ 5 \mathrm{~V}$

Up to 1 mA @ 3 V

- Operating Temperature Range: -40 to $85^{\circ} \mathrm{C}$
- Independent R Counters Allow Use of Different Step Sizes for Each Loop
- Double-Buffered R Register - Reference and Loop Divide Ratios Updated Simultaneously
- R Counter Division Range: 1 and 10 to 8,191
- Dual-Modulus Capability Provides Total Division of the VCO Frequency up to 262,143
- Direct Interface to Motorola SPI Data Port
- Evaluation Kit Available (Part Number MC145220EVK)
- See Application Note AN1253/D for Low-Pass Filter Design, and AN1277/D for Offset Reference PLLs for Fine Resolution or Fast Hopping

NOTE: This product has been evaluated for operation over a wider range than 40 MHz to 1.1 GHz . If your design requires a wider frequency range, contact your local Motorola representative for further information.

MOTOROLA

BLOCK DIAGRAM

PIN $9=\mathrm{V}+$ (Positive Power to the main PLL, Reference Circuit, and a portion of the Serial Port)
PIN 6 = GND (Ground to the main PLL, Reference Circuit, and a portion of the Serial Port)
PIN $12=\mathrm{V}^{\prime}$ ((Positive Power to PLL' and a portion of the Serial Port)
PIN $15=$ GND' (Ground to PLL' and a portion of the Serial Port)

MAXIMUM RATINGS* (Voltages Referenced to GND, unless otherwise stated)

Symbol	Parameter	Value	Unit
$\mathrm{V}_{+}, \mathrm{V}^{\prime}{ }^{\prime}$	DC Supply Voltage	-0.5 to +6.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	-0.5 to $\mathrm{V}++0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	-0.5 to $\mathrm{V}++0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 10	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 20	mA
I	DC Supply Current, $\mathrm{V}+, \mathrm{V}^{\prime}$, GND, and GND' Pins	30	mA
P_{D}	Power Dissipation, per Package	300	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=\mathrm{V}^{\prime}{ }^{\prime}=2.7\right.$ to 5.5 V , GND $=\mathrm{GND}^{\prime}$, Voltages Referenced to GND , $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise stated)

Symbol	Parameter	Test Condition	Guaranteed Limit	Unit
$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & \text { Maximum Low-Level Input Voltage } \\ & \qquad\left(\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \overline{\mathrm{ENB}}, \mathrm{REF}\right. \end{aligned}$	Device in Reference Mode, dc Coupled	$0.3 \times \mathrm{V}+$	V
V_{IH}	$\left.\begin{array}{l} \text { Minimum High-Level Input Voltage } \\ \qquad\left(\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \overline{\mathrm{ENB}}, \mathrm{REF}\right. \end{array}\right)$	Device in Reference Mode, dc Coupled	$0.7 \times \mathrm{V}+$	V
$\mathrm{V}_{\mathrm{Hys}}$	Minimum Hysteresis Voltage (CLK, ENB)		100	mV
VOL	Maximum Low-Level Output Voltage (LD, LD', REF ${ }_{\text {out }}$, Output A)	$I_{\text {out }}=20 \mu \mathrm{~A}$, Device in Reference Mode; Output A Not Selected as Port	0.1	V
V_{OH}	Minimum High-Level Output Voltage ($\mathrm{REF}_{\text {out }}$, Output A)	$\mathrm{I}_{\text {out }}=-20 \mu \mathrm{~A}$, Device in Reference Mode; Output A Not Selected as Port	$\mathrm{V}+-0.1$	V
IOL	Minimum Low-Level Output Current (REF ${ }_{\text {out }}$)	$\mathrm{V}_{\text {out }}=0.3 \mathrm{~V}$	0.5	mA
${ }^{\text {IOL }}$	Minimum Low-Level Output Current $\left(\mathrm{PD}_{\text {out }} / \phi \mathrm{R}, \mathrm{PD}_{\text {out }} / \phi \mathrm{R}^{\prime}, \mathrm{Rx} / \phi \mathrm{V}, \mathrm{Rx}^{\prime} / \phi \mathrm{V}^{\prime}\right)$	$\mathrm{V}_{\text {out }}=0.3 \mathrm{~V}$; Phase/Frequency Detectors Configured with $\phi \mathrm{R}, \phi \mathrm{V}$ Outputs	0.5	mA
IOL	Minimum Low-Level Output Current (Output A)	$\mathrm{V}_{\text {out }}=0.3 \mathrm{~V}$	0.5	mA
IOL	Minimum Low-Level Output Current (LD, LD')	$\mathrm{V}_{\text {out }}=0.3 \mathrm{~V}$	0.5	mA
${ }^{\mathrm{I} O H}$	Minimum High-Level Output Current (REF ${ }_{\text {out }}$)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{+}-0.3 \mathrm{~V}$	-0.4	mA
${ }^{\mathrm{IOH}}$	Minimum High-Level Output Current ($\left.\mathrm{PD}_{\text {out }} / \phi \mathrm{R}, \mathrm{PD}_{\text {out }} / \phi \mathrm{R}^{\prime}, \mathrm{Rx} / \phi \mathrm{V}, \mathrm{Rx}^{\prime} / \phi \mathrm{V}^{\prime}\right)$	$\mathrm{V}_{\text {out }}=\mathrm{V}_{+}-0.3 \mathrm{~V}$; Phase/Frequency Detectors Configured with $\phi \mathrm{R}, \phi \mathrm{V}$ Outputs	-0.4	mA
IOH	Minimum High-Level Output Current (Output A)	$\mathrm{V}_{\text {out }}=\mathrm{V}+-0.3 \mathrm{~V}$; Output A Not Selected as Port	-0.4	mA
lin	Maximum Input Leakage Current ($\left.\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{REF}_{\text {in }}\right)$	$\mathrm{V}_{\text {in }}=\mathrm{V}+$ or GND; Device in XTAL Mode	± 1.0	$\mu \mathrm{A}$
$l_{\text {in }}$	Maximum Input Current (REF in)	$\mathrm{V}_{\text {in }}=\mathrm{V}+$ or GND; Device in Reference Mode	± 150	$\mu \mathrm{A}$
IOZ	Maximum Output Leakage Current $\left(\mathrm{PD}_{\mathrm{out}} / \phi \mathrm{R}, \mathrm{PD}_{\mathrm{out}}{ }^{\prime} / \phi \mathrm{R}^{\prime}\right)$	$\mathrm{V}_{\text {out }}=\mathrm{V}+$ or GND; Phase/Frequency Detectors Configured with PD out Output, Output in HighImpedance State	± 150	nA
${ }^{\text {IOZ }}$	Maximum Output Leakage Current (Output A, LD, LD')	$\mathrm{V}_{\text {out }}=\mathrm{V}+$ or GND; Output A Selected as Port; Output in High-Impedance State	± 5	$\mu \mathrm{A}$
ISTBY	Maximum Standby Supply Current	Vin $=\mathrm{V}+$ or GND; Outputs Open; Both PLLs in Standby Mode, Shut-Down Crystal Mode or REF ${ }_{\text {out }}$-Static-Low Reference Mode	30	$\mu \mathrm{A}$
${ }^{\text {T }}$	Total Operating Supply Current	$\mathrm{f}_{\text {in }}=\mathrm{f}_{\text {in }}{ }^{\prime}=1.1 \mathrm{GHz}$; both loops active; $R E F_{i n}=13 \mathrm{MHz}$ @ $1 \mathrm{Vp-p}$; Output A = Inactive; All Outputs = No Connect; $\mathrm{D}_{\mathrm{in}}, \mathrm{ENB}, \mathrm{CLK}=\mathrm{V}+$ or GND; Phase/Frequency Detectors Configured with $\phi \mathrm{R}, \phi \mathrm{V}$ Outputs	*	mA

* The nominal value is 12 mA . This is not a guaranteed limit.

ANALOG CHARACTERISTICS - CURRENT SOURCE/SINK OUTPUTS — $\mathrm{PD}_{\text {out }} / \phi_{\mathbf{R}}$ AND $\mathrm{PD}_{\text {out }}{ }^{\prime} / \phi_{\mathbf{R}^{\prime}}$
(Phase/Frequency Detectors Configured with PD ${ }_{\text {out }}$ Outputs, $\mathrm{I}_{\text {out }} \leq 2 \mathrm{~mA} @ \mathrm{~V}+=\mathrm{V}_{+}{ }^{\prime}=4.5$ to 5.5 V , $\mathrm{I}_{\mathrm{out}} \leq 1 \mathrm{~mA} @ \mathrm{~V}_{+}=\mathrm{V}_{+}{ }^{\prime}=2.7$ to 4.4 V , GND $=$ GND ${ }^{\prime}$, Voltages Referenced to GND)

Parameter		Test Condition	Guaranteed Limit	Unit
Maximum Source Current Variation Part-to-Part	(Notes 3 and 4)	$\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{+}$	± 20	\%
Maximum Sink-versus-Source Mismatch	(Note 3)	$\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{+}$	12	\%
Output Voltage Range	(Note 3)	Iout variation $\leq 20 \%$	0.5 to V+-0.5V	V

NOTES:

1. Percentages calculated using the following formula: (Maximum Value - Minimum Value)/Maximum Value.
2. See Rx Pin Description for external resistor values.
3. This parameter is guaranteed for a given temperature within -40 to $85^{\circ} \mathrm{C}$ and given supply voltage within 2.7 to 5.5 V .
4. Applicable for the $R x / \phi \vee$ or $R x^{\prime} / \phi V^{\prime}$ reference pin tied to the GND or GND' pin through a resistor. See Pin Descriptions for suggested resistor values.

AC INTERFACE CHARACTERISTICS

$\left(\mathrm{V}+=\mathrm{V}^{\prime}{ }^{\prime}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{GND}=\mathrm{GND}^{\prime}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$)

Symbol	Parameter	Guaranteed Limit	Unit
${ }^{\mathrm{f}} \mathrm{Clk}$	Serial Data CLK Frequency NOTE: Refer to Clock t_{w} below	dc to 2.0	MHz
tPLH, tPHL	Maximum Propagation Delay, CLK to Output A (Selected as Data Out) (Figures 1 and 5)	200	ns
tPZL, tPLZ	Maximum Propagation Delay, ENB to Output A (Selected as Port) (Figures 2 and 6)	200	ns
${ }^{\text {t }}$ LH, ${ }^{\text {t }}$ THL	Maximum Output Transition Time, Output A; tTHLonly, on Output A when Selected as Port (Figures 1, 5, and 6)	200	ns
C_{in}	Maximum Input Capacitance - Din , CLK, ENB	10	pF

TIMING REQUIREMENTS $\left(\mathrm{V}_{+}=\mathrm{V}_{+}{ }^{\prime}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{GND}=\mathrm{GND}^{\prime}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, $\operatorname{Input} \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise indicated)

Symbol	Parameter				Guaranteed Limit	Unit
$\mathrm{t}_{\text {su }}, \mathrm{th}_{\mathrm{h}}$	Minimum Setup and Hold Times, D_{in} versus CLK	(Figure 3)	50			
$\mathrm{t}_{\mathrm{su}}, \mathrm{t}_{\mathrm{h}}, \mathrm{t}_{\mathrm{rec}}$	Minimum Setup, Hold, and Recovery Times, ENB versus CLK	(Figure 4)	100			
t_{w}	Minimum Pulse Width, ENB	(Figure 4)	$*$			
t_{w}	Minimum Pulse Width, CLK	(Figure 1)	250			
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times — CLK	(Figure 1)	100			

* The minimum limit is 3 REF in cycles or $195 f_{\text {in }}$ or $f_{\text {in }}{ }^{\prime}$ cycles with selection of a $64 / 65$ prescale ratio or $99 f_{\text {in }}$ or $f_{i n}{ }^{\prime}$ cycles with selection of a $32 / 33$ prescale ratio, whichever is greater.

Figure 1.

Figure 3.

*Includes all probe and fixture capacitance.

Figure 5.

Figure 2.

Figure 4.

* Includes all probe and fixture capacitance.

Figure 6.

LOOP SPECIFICATIONS ($\mathrm{V}_{+}=\mathrm{V}_{+}{ }^{\prime}=2.7$ to 5.5 V unless otherwise indicated, $\mathrm{GND}=\mathrm{GND}^{\prime}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	GuaranteedOperating Range		Unit
			Min	Max	
$P_{\text {in }}$	Input Sensitivity Range, $\mathrm{fin}^{\text {in }}$ or fin^{\prime} (Figure 7)	$\begin{aligned} & 40 \mathrm{MHz} \leq \text { frequency }<300 \mathrm{MHz} \\ & 300 \mathrm{MHz} \leq \text { frequency }<700 \mathrm{MHz} \\ & 700 \mathrm{MHz} \leq \text { frequency }<1100 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \hline-2 \\ -5 \\ -16 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 6 \\ & 4 \end{aligned}$	dBm*
$\Delta \mathrm{P}_{\text {in }}$	Difference Allowed Between $\mathrm{fin}^{\text {a }}$ and fin^{\prime}			10	dB
-	Isolation Between $\mathrm{f}_{\text {in }}$ and $\mathrm{fin}^{\prime}{ }^{\prime}$		15		dB
${ }_{\text {fref }}$	Input Frequency, REFin Externally Driven in Reference Mode (Figure 8)	$\mathrm{V}_{\text {in }} \geq 400 \mathrm{mV} \mathrm{p}-\mathrm{p}$, R Counter set to divide ratio such that $f_{\mathrm{R}} \leq 1 \mathrm{MHz}$, REF Counter set to divide ratio such that $\mathrm{REF}_{\text {out }} \leq 5 \mathrm{MHz}$	4	27	MHz
fXTAL	Crystal Frequency, Crystal Mode (Figure 9)	$\mathrm{C} 1 \leq 30 \mathrm{pF}, \mathrm{C} 2 \leq 30 \mathrm{pF}$, Includes Stray Capacitance; R Counter and REF Counter same as above $\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{+}=3.5 \\ & \mathrm{~V}_{+}=4.5 \\ & \mathrm{~V}_{+}=5.5 \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \\ & 15 \\ & 15 \end{aligned}$	MHz
$\mathrm{f}_{\text {out }}$	Output Frequency, REF ${ }_{\text {out }}$ (Figures 10 and 12)	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	dc	5	MHz
f	Operating Frequency of the Phase Detectors		dc	1	MHz
t_{w}	Output Pulse Width, $\phi \mathrm{R}, \phi \mathrm{V}, \phi \mathrm{R}^{\prime}, \phi \mathrm{V}^{\prime}$ (Figures 11 and 12)	f_{R} in Phase with $\mathrm{fV}^{\prime}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	16	125	ns
$\mathrm{C}_{\text {in }}$	Input Capacitance, REFin		-	5	pF

* Power level at the input to the dc block.

NOTE: Alternately, the 50Ω pad may be a T network.
Figure 7. Test Circuit

Figure 8. Test Circuit - Reference Mode

Figure 9. Test Circuit - Crystal Mode

Figure 11. Switching Waveform

Figure 10. Switching Waveform

* Includes all probe and fixture capacitance.

Figure 12. Test Circuit

Figure 13. Nominal Input Impedance of $f_{i n}$ and $f_{i n}{ }^{\prime}$ - Series Format ($R+j X$)
(50 - 1100 MHz)

PIN DESCRIPTIONS

DIGITAL INTERFACE PINS

$D_{\text {in }}$

Serial Data Input (Pin 20)

The bit stream begins with the MSB and is shifted in on the low-to-high transition of CLK. The bit pattern is 1 byte (8 bits) long to access the C or configuration registers, 2 bytes (16 bits) to access the first buffer of the R registers, or 3 bytes (24 bits) to access the A registers (see Table 1). The values in the registers do not change during shifting because the transfer of data to the registers is controlled by ENB.

NOTE

The value programmed for the N counter must be greater than or equal to the value of the A counter.

The 13 LSBs of the R registers are double-buffered. As indicated above, data is latched into the first buffer on a 16-bit transfer. (The 3 MSBs are not double-buffered and have an immediate effect after a 16-bit transfer.) The two second buffers of the R register contain the two 13-bit divide ratios for the R counters. These second buffers are loaded with the contents of the first buffer as follows. Whenever the A register is loaded, the Rs (second) buffer is loaded from the R (first) buffer. Similarly, whenever the A' register is loaded, the Rs^{\prime} (second) buffer is updated from the R (first) buffer. This allows presenting new values to the R, A, and N counters simultaneously. Note that two different R counter divide ratios may be established: one for the main PLL and another for PLL'.

The bit stream does not need address bits due to the innovative BitGrabber Plus registers. A steering bit is used to direct data to either the main PLL or PLL' section of the chip. Data is retained in the registers over a supply range of 2.7 to 5.5 V . The formats are shown in Figures 14, 15, and 16.

Din typically switches near 50% of $V+$ to maximize noise immunity. This input can be directly interfaced to CMOS devices with outputs guaranteed to switch near rail-to-rail. When interfacing to NMOS or TTL devices, either a level shifter (MC74HC14A, MC14504B) or pull-up resistor of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ must be used. Parameters to consider when sizing the resistor are worst-case IOL of the driving device, maximum tolerable power consumption, and maximum data rate.

Table 1. Register Access
(MSBs are shifted in first; C0, RO, and A0 are the LSBs)

Number of Clocks	Accessed Register	Bit Nomenclature
8	C Registers	C7, C6, C5, ..., C0
16	R Register,	R15, R14, R13, ..., R0
	First Buffer	
24	A Registers	A23, A22, A21, ..., A0
Other Values ≤ 32	Not Allowed	
Values >32	See Figures	
	24 to 27	

CLK
 Serial Data Clock Input (Pin 19)

Low-to-high transitions on CLK shift bits available at the $\mathrm{D}_{\text {in }}$ pin, while high-to-low transitions shift bits from Output A (when configured as Data Out, see Pin 10). The 24-1/2 stage shift register is static, allowing clock rates down to dc in a continuous or intermittent mode.
Eight clock cycles are required to access the C registers. Sixteen clock cycles are needed for the first buffer of the R register. Twenty-four cycles are used to access the A registers. See Table 1 and Figures 14, 15, and 16. The number of clocks required for cascaded devices is shown in Figures 25 through 27.

CLK typically switches near 50% of $\mathrm{V}+$ and has a Schmitttriggered input buffer. Slow CLK rise and fall times are allowed. See the last paragraph of $\mathbf{D}_{\mathbf{i n}}$ for more information.

NOTE

To guarantee proper operation of the power-on reset (POR) circuit, the CLK pin must be held at GND (with ENB being a don't care) or ENB must be held at the potential of the $\mathrm{V}+$ pin (with CLK being a don't care) during power-up. Floating, toggling, or having these pins in the wrong state during power-up does not harm the chip, but causes two potentially undesirable effects. First, the outputs of the device power up in an unknown state. Second, if two devices are cascaded, the A Registers must be written twice after power up. After these two accesses, the two cascaded chips perform normally.

ENB

Active-Low Enable Input (Pin 11)

This pin is used to activate the serial interface to allow the transfer of data to/from the device. When ENB is in an inactive high state, shifting is inhibited and the port is held in the initialized state. To transfer data to the device, ENB (which must start inactive high) is taken low, a serial transfer is made via $D_{\text {in }}$ and CLK, and ENB is taken back high. The low-to-high transition on ENB transfers data to the C or A registers and first buffer of the R register, depending on the data stream length per Table 1.

NOTE

Transitions on ENB must not be attempted while CLK is high. This puts the device out of synchronization with the microcontroller. Resynchronization occurs whenever ENB is high and CLK is low.

This input is Schmitt-triggered and switches near 50% of V_{+}, thereby minimizing the chance of loading erroneous data into the registers. See the last paragraph of $D_{\text {in }}$ for more information.
For POR information, see the note for the CLK pin.

OUTPUT A

Configurable Digital Output (Pin 10)

Output A is selectable as $\mathrm{f}_{\mathrm{R}}, \mathrm{fV}_{\mathrm{V}}, \mathrm{f}_{\mathrm{R}}{ }^{\prime}, \mathrm{fV}^{\prime}$, Data Out, or Port. Bits A21 and A22 and the steering bit (A23) control the selection; see Figure 15. When selected as Port, the pin becomes an open-drain N-channel MOSFET output. As such, a pullup device is needed for pin 10. With all other selections, the pin is a totem-pole (push-pull) output.

If A22 $=$ A21 $=$ high, Output A is configured as $f R$ when the steering bit is low and f^{\prime} ' when the bit is high. These signals are the buffered outputs of the 13 -stage R counters. The signals appear as normally low and pulse high. The signals can be used to verify the divide ratios of the R counters. These ratios extend from 10 to 8191 and are determined by the binary value loaded into bits R0-R12 in the R register. Also, direct access to the phase detectors via the REFin pin is allowed by choosing a divide value of one. See Figure 16. The maximum frequency at which the phase detectors operate is 1 MHz . Therefore, the frequency of f_{R} and f_{R} ' should not exceed 1 MHz .

If A22 $=$ high and A21 = low, Output A is configured as fV when the steering bit is low and fv^{\prime} when the bit is high. These signals are the buffered outputs of the 12-stage N counters. The signals appear as normally low and pulse high. The signals can be used to verify the operation of the prescalers, A counters, and N counters. The divide ratio between the $f_{i n}$ or $f_{i n}{ }^{\prime}$ input and the $f V$ or fV^{\prime} signal is $\mathrm{N} \times \mathrm{P}+\mathrm{A}$. N is the divide ratio of the N counter, P is 32 with a $32 / 33$ prescale ratio or 64 with a $64 / 65$ prescale ratio, and A is the divide ratio of the A counter. These ratios are determined by bits loaded into the A registers. See Figure 15. The maximum frequency at which the phase detectors operate is 1 MHz . Therefore, the frequency of fV^{2} and fV^{\prime} should not exceed 1 MHz .

If A22 = low and A21 = high, Output A is configured as Data Out. This signal is the serial output of the $24-1 / 2$ stage shift register. The bit stream is shifted out on the high-to-low transition of the CLK input. Upon power up, Output A is automatically configured as Data Out to facilitate cascading devices.

If A22 = A21 = low, Output A is configured as Port. This signal is a general-purpose digital output which may be used as an MCU port expander. This signal is low when the Port bit (C1) of the C register is low, and high impedance when the Port bit is high. See Figure 14.

REFERENCE PINS

REF in and REF $_{\text {out }}$

Reference Oscillator Input and Output (Pins 1 and 2)
Configurable Pins for a Crystal or an External Reference. This pair of pins can be configured in one of two modes: the crystal mode or the reference mode. Bits R13, R14, and R15 in the R register control the modes as shown in Figure 16.
In the crystal mode, these pins form a reference oscillator when connected to terminals of an external parallel-resonant crystal. Frequency-setting capacitors of appropriate
values, as recommended by the crystal supplier, are connected from each of the two pins to ground (up to a maximum of 30 pF each, including stray capacitance). An external resistor of $1 \mathrm{M} \Omega$ to $15 \mathrm{M} \Omega$ is connected directly across the pins to ensure linear operation of the amplifier. The required connections for the crystal are shown in Figure 9. To turn on the oscillator, bits R15, R14, and R13 must have an octal value of one (001 in binary). This is the active-crystal mode shown in Figure 16. In this mode, the crystal oscillator runs and the R Counter divides the crystal frequency, unless the part is in standby. If the part is placed in standby via the C or C^{\prime} register, the oscillator runs, but the R or R^{\prime} counter is stopped, respectively. However, if bits R15 to R13 have a value of 0, the oscillator is stopped, which saves additional power. This is the shut-down crystal mode shown in Figure 16, and can be engaged whether in standby or not.

In the reference mode, REFin (pin 1) accepts a signal from an external reference oscillator, such as a TCXO. A signal swinging from at least the V_{IL} to V_{IH} levels listed in the Electrical Characteristics table may be directly coupled to the pin . If the signal is less than this level, ac coupling must be used as shown in Figure 8. The ac-coupled signal must be at least $400 \mathrm{mV} \mathrm{p-p}$. Due to an on-board resistor which is engaged in the reference modes, an external biasing resistor tied between $R E F_{\text {in }}$ and $R E F_{\text {out }}$ is not required.
With the reference mode, the REF out $^{\text {pin }}$ is configured as the output of a divider. As an example, if bits R15, R14, and R13 have an octal value of seven, the frequency at $R E F_{\text {out }}$ is the $R E F_{\text {in }}$ frequency divided by 16. In addition, Figure 16 shows how to obtain ratios of eight, four, and two. A ratio of one-to-one can be obtained with an octal value of three. Upon power up, a ratio of eight is automatically initialized. The maximum frequency capability of the REF out pin is 5 MHz for large output swings ($\mathrm{VOH}_{\mathrm{OH}}$ to V_{OL}) and 25 pF loads. Therefore, for REFin frequencies above 5 MHz , the one-to-one ratio may not be used for these large signal swing and large C_{L} requirements. Likewise, for $R E F_{i n}$ frequencies above 10 MHz , the ratio must be more than two.

If REF out is unused, an octal value of two should be used for R15, R14, and R13 and the REF out pin should be floated. A value of two allows REFin to be functional while disabling REFout, which minimizes dynamic power consumption and electromagnetic interference (EMI).

LOOP PINS

$\mathbf{f}_{\mathbf{i n}}, \overline{\boldsymbol{f}_{\mathrm{in}}}$ and $\mathrm{f}_{\mathrm{in}^{\prime}}, \overline{\boldsymbol{f}_{\mathrm{in}}{ }^{\prime}}$
Frequency Inputs (Pins 8, 7 and 13, 14)
These pins feed the onboard RF amplifiers which drive the prescalers. These inputs may be fed differentially. However, they usually are used in single-ended configurations (shown in Figure 7). Note that $f_{\text {in }}$ is driven while $f_{\text {in }}$ must be tied to ac ground (via capacitor). The signal sources driving these pins originate from external VCOs.

Motorola does not recommend driving fin while terminating $f_{\text {in }}$ because this configuration is not tested for sensitivity. The sensitivity is dependent on the frequency as shown in the Loop Specifications table.

$\mathrm{PD}_{\text {out }} / \phi \mathbf{R}, \mathrm{PD}_{\text {out }} / / \phi \mathbf{R}^{\prime}$
 Single-Ended Phase/Frequency Detector Outputs (Pins 4 and 17)

When the C 2 bits in the C or C^{\prime} registers are low, these pins are independently configured as single-ended outputs $\mathrm{PD}_{\text {out }}$ or $\mathrm{PD}_{\text {out }}$, respectively. As such, each pin is a threestate current-source/sink output for use as a loop error signal when combined with an external low-pass filter. The phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detector is described below and is shown in Figure 17.

POL bit (C0) in the C register = low (see Figure 14)
Frequency of $f_{V}>f_{R}$ or Phase of $f V$ Leading f_{R} : currentsinking pulses from a floating state
Frequency of $\mathrm{f}_{\mathrm{V}}<\mathrm{f}_{\mathrm{R}}$ or Phase of f_{V} Lagging f_{R} : currentsourcing pulses from a floating state
Frequency and Phase of $f V=f_{R}$: essentially a floating state; voltage at pin determined by loop filter
POL bit (C0) = high
Frequency of $\mathrm{f}_{\mathrm{V}}>\mathrm{f}_{\mathrm{R}}$ or Phase of f_{V} Leading f_{R} : currentsourcing pulses from a floating state
Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging f_{R} : currentsinking pulses from a floating state
Frequency and Phase of $f V=f_{R}$: essentially a floating state; voltage at pin determined by loop filter
These outputs can be enabled, disabled, and inverted via the C and C^{\prime} registers. If desired, these pins can be forced to the floating state by utilization of the standby feature in the C or C^{\prime} registers (bit C6). This is a patented feature.
The phase detector gain is controllable by bits C4 and C5: gain (in amps per radian) = PDout current in amps divided by 2π.

$\mathrm{PD}_{\text {out }} / \phi \mathbf{R}, \mathbf{R x} /{ }_{z} \phi \mathbf{V}$ and $\mathbf{P D}_{\text {out }}{ }^{\prime} / \phi \mathbf{R}^{\prime}, \mathbf{R x}^{\prime} / \phi \mathbf{V}^{\prime}$ Double-Ended Phase/Frequency Detector Outputs

 (Pins 4, 5 and 17, 16)When the C 2 bits in the C or C^{\prime} registers are high, these two pairs of pins are independently configured as doubleended outputs $\phi \mathrm{R}, \phi \mathrm{V}$ or $\phi \mathrm{R}^{\prime}, \phi \mathrm{V}^{\prime}$, respectively. As such, these outputs can be combined externally to generate a loop error signal. Through use of a Motorola patented technique, the detector's dead zone has been eliminated. Therefore, the phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detectors are described below and are shown in Figure 17.

POL bit (C0) in the C register = low (see Figure 14)
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading $f R: \phi V=$ negative pulses, $\phi \mathrm{R}=$ essentially high
Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging $f R: \phi V=$ essentially high, $\phi \mathrm{R}=$ negative pulses
Frequency and Phase of $f V=f_{R}: \phi V$ and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase
POL bit (CO) = high
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading $f_{R}: \phi_{R}=$ negative pulses, $\phi \mathrm{V}=$ essentially high
Frequency of $\mathrm{f}_{\mathrm{V}}<\mathrm{f}_{\mathrm{R}}$ or Phase of f V Lagging f_{R} : $\phi_{\mathrm{R}}=$ essentially high, $\phi \mathrm{V}=$ negative pulses
Frequency and Phase of $f V=f_{R}: \phi V$ and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase

These outputs can be enabled, disabled, or interchanged via C register bits C6 or C0. This is a patented feature. Note that when disabled in standby, these outputs are forced to their rest condition (high state). See Figure 14.

The $\phi \mathrm{R}$ and $\phi \mathrm{V}$ output signals swing from approximately GND to V^{+}.

LD and LD'
 Lock Detector Outputs (Pins 3 and 18)

Each output is essentially at a high-impedance state with very narrow low-going pulses of a few nanoseconds when the respective loop is locked ($\mathrm{f} R$ and fV of the same phase and frequency). The output pulses low when fV_{V} and f_{R} are out of phase or different frequencies. LD is the logical ANDing of ϕR and ϕV, while LD' is the logical ANDing of ϕR^{\prime} and ϕV^{\prime}. See Figure 17.
Upon power up, on-chip initialization circuitry forces LD and LD^{\prime} to the high-impedance state. These pins are low during standby. If unused, LD should be tied to GND and LD' should be tied to GND'.

These outputs have open-drain N-channel MOSFET drivers. This facilitates a wired-OR function. See Figure 21.

$\mathbf{R x} / \phi \mathbf{V}$ and $\mathbf{R x}^{\prime} / \phi \mathbf{V}^{\prime}$

External Current Setting Resistors (Pins 5 and 16)

When the C 2 bits in the C or C^{\prime} registers are low, these two pins are independently configured as current setting pins Rx or Rx^{\prime}, respectively. As such, resistors tied between each of these pins and GND and GND', in conjunction with bits C4 and C 5 in the C and C^{\prime} registers, determine the amount of current that the $\mathrm{PD}_{\text {out }}$ pins sink and source. When bits C4 and C5 are both set high, the maximum current is obtained; see Table 2 for other values of current.

Table 2. $\mathrm{PD}_{\text {out }}$ or $\mathrm{PD}_{\text {out }}$ Current

C5	C4	Current
0	0	5%
0	1	50%
1	0	80%
1	1	100%

The formula for determining the value of $R x$ or $R x^{\prime}$ is as follows.

$$
R x=\frac{V 1-V 2}{I}
$$

where Rx is the value of external resistor in ohms, V 1 is the supply voltage, V 2 is 1.5 V for a reference current through Rx of $100 \mu \mathrm{~A}$ or 1.745 V for a reference current of $200 \mu \mathrm{~A}$, and I is the reference current flowing through Rx or Rx^{\prime}.

The reference current flowing through Rx or Rx^{\prime} is multiplied by a factor of approximately 10 (in the 100% current mode) and delivered by the $\mathrm{PD}_{\text {out }}$ or $\mathrm{PD}_{\text {out }}$ pin, respectively. To achieve a maximum phase detector output current of 1 mA , the resistor should be about $15 \mathrm{k} \Omega$ when a 3 V supply is employed. See Table 3.

Table 3. Rx Values

Supply Voltage	$\mathbf{R x}$	$\mathbf{P D}_{\text {out }}$ or PD $_{\text {out }}{ }^{\prime}$ Current in $\mathbf{1 0 0 \%}$ Mode
3 V	$15 \mathrm{k} \Omega$	1 mA
5 V	$16 \mathrm{k} \Omega$	2 mA

Do not use a decoupling capacitor on the Rx or Rx' pin. Use of a capacitor causes undesirable current spikes to appear on the phase detector output when invoking the standby mode.

POWER SUPPLY PINS

V_{+}and $\mathrm{V}^{\prime}{ }^{\prime}$

Positive Supply Potentials (Pins 9 and 12)

V+ supplies power to the main PLL, reference circuit, and a portion of the serial port. V^{\prime} ' supplies power to PLL^{\prime} and a portion of the serial port. Both V_{+}and $\mathrm{V}^{\prime}{ }^{\prime}$ must be at the same voltage level and may range from 2.7 V to 5.5 V with respect to the GND and GND' pins.

For optimum performance, V_{+}should be bypassed to GND and V^{\prime} ' bypassed to GND' using separate low-inductance capacitors mounted very close to the MC145220. Lead lengths and printed circuit board traces to the capacitors should be minimized. (The very fast switching speed of the device can cause excessive current spikes on the power leads if they are improperly bypassed.)

GND and GND'

Grounds (Pins 6 and 15)

The GND pin is the ground for the main PLL and GND' is the ground for PLL'.

* At this point, the new byte is transferred to the C or C^{\prime} register and stored. No other registers are affected.

C7 - Steer: Used to direct the data to either the C or C^{\prime} register. A low level directs data to the C register; a high level is for the C^{\prime} register.

C6 - Standby: When set high, places both the main PLL and PLL' (when C6 is set in the C register) or PLL' only (when C6 is set in the C^{\prime} register) in the standby mode for reduced power consumption. The associated $P D_{\text {out }}$ is forced to the floating state, the associated counters (A, N, and R) are inhibited from counting, the associated Rx current is shut off, and the associated prescaler stops counting and is placed in a low current mode. The associated double-ended phase/frequency detector outputs are forced to a high level. In standby, the associated LD output is placed in the low-state, thus indicating "not locked" (open loop). During standby, data is retained in all registers and any register may be accessed.
In standby, the condition of the REF/OSC circuitry is determined by bits R13, R14, and R15 in the R register per Figure 16. However, if $\mathrm{REF}_{\text {out }}=$ static low is selected, the internal feedback resistor is disconnected and the $R E F_{i n}$ is inhibited when both PLL and PLL' are placed in standby via the C register. Thus, the REFin only presents a capacitive load. Note: PLL/PLL' standby does not affect the other modes of the REF/OSC circuitry as determined by bits R13, R14, and R15 in the R register. The PLL' standby mode (controlled from the C^{\prime} register) has no effect on the REF/OSC circuit.

When C6 is reset low, the associated PLL (or PLLs) is (are) taken out of standby in two steps. First
 on, all counters are enabled, and the Rx current is enabled. Any f_{R} and f_{V} signals are inhibited from toggling the phase/frequency detectors and lock detectors. Second, when the appropriate f_{R} pulse occurs, the A and N counters are jam loaded, the prescaler is gated on, and the phase/frequency and lock detectors are initialized. Immediately after the jam load, the A, N, and R counters begin counting down together. At this point, the f_{R} and f_{V} pulses are enabled to the phase and lock detectors. (Patented feature.)
C5, C4-I2, I1: Independently controls the $\mathrm{PD}_{\text {out }}$ or $\mathrm{PD}_{\text {out }}$ source/sink current per Table 2. With both bits high, the maximum current (as set by Rx or Rx') is available. POR forces C5 and C4 to high levels.
C3 - Spare: Unused
C2 - PDA/B: Independently selects which phase/frequency detector is to be used. When set high, the double-ended detector is selected with outputs $\phi \mathrm{R}$ and $\phi \mathrm{V}$ or $\phi \mathrm{R}^{\prime}$ and $\phi \mathrm{V}^{\prime}$. When reset low, the current source/sink detector is selected with outputs $\mathrm{PD}_{\text {out }}$ or $\mathrm{PD}_{\text {out }}{ }^{\prime}$. In the second case, the appropriate Rx or $\mathrm{Rx} \mathrm{x}^{\prime}$ pin is tied to an external resistor. POR forces C 2 low.

C1 - Port: When the Output A pin is selected as "Port" via bits A22 and A21, C1 of the C register determines the state of Output A. When C1 is set high, Output A is forced to the high-impedance state; C1 low forces Output A low. The Port bit is not affected by the standby mode. Note: C1 of the C' register is not used in any mode.

CO - POL: Selects the output polarity of the associated phase/frequency detectors. When set high, this bit inverts the associated current source/sink output and interchanges the associated double-ended output relative to the waveforms in Figure 17. Also, see the phase detector output pin descriptions for more information. This bit is cleared low at power up.

Figure 14. C and \mathbf{C}^{\prime} Register Accesses and Format (8 Clock Cycles are Used)

Figure 15. A and A^{\prime} Register Accesses and Format (24 Clock Cycles are Used)

NOTES:

1. Bits R15-R13 control the configurable "Buffer and Control" block (see Block Diagram).
2. Bits R12 - R0 control the "13-stage R counter" blocks (see Block Diagram).
3. A power-on initialize circuit forces a default $R E F_{\text {in }}$ to $R E F_{\text {out }}$ ratio of eight.
4. At this point, bits R13, R14, and R15 are stored and sent to the "Buffer and Control" block in the Block Diagram. Bits R0 - R12 are loaded into the first buffer in the double-buffered section of the R register. Therefore, the R or R^{\prime} counter divide ratio is not altered yet and retains the previous ratio loaded. The C, C', A, and A' registers are not affected.
5. Bits R0 - R12 are transferred to the second buffer of the R register (Rs in the Block Diagram) on a subsequent 24-bit write to the A register. The bits are transferred to Rs' on a subsequent 24 -bit write to the A^{\prime} register. The respective R counter begins dividing by the new ratio after completing the rest of its present count cycle.
6. Allows direct access to reference input of phase/frequency detectors.

Figure 16. R Register Access and Format (16 Clock Cycles are Used)

NOTES:

1. At this point, when both f_{R} and f_{V} are in phase, the output source and sink circuits are turned on for a short interval.
2. The $P D_{\text {out }}$ either sources or sinks current during out-of-lock conditions. When locked in phase and frequency, the output is mostly in a floating condition and the voltage at that pin is determined by the low-pass filter capacitor. $\mathrm{PD}_{\mathrm{out}}, \phi \mathrm{R}$, and $\phi \mathrm{V}$ are shown with the polarity bit $(\mathrm{POL})=$ low; see Figure 14 for POL.
3. $\mathrm{V}_{\mathrm{H}}=$ High voltage level, $\mathrm{V}_{\mathrm{L}}=$ Low voltage level.
4. The waveforms are applicable to both the main PLL and PLL'.

Figure 17. Phase/Frequency Detectors and Lock Detector Output Waveforms

DESIGN CONSIDERATIONS

CRYSTAL OSCILLATOR CONSIDERATIONS

The following options may be considered to provide a reference frequency to Motorola's CMOS frequency synthesizers.

Use of a Hybrid Crystal Oscillator

Commercially available temperature-compensated crystal oscillators (TCXOs) or crystal-controlled data clock oscillators provide very stable reference frequencies. An oscillator capable of CMOS logic levels at the output may be direct or dc coupled to REFin. If the oscillator does not have CMOS logic levels on the outputs, capacitive or ac coupling to REF $_{\text {in }}$ must be used. See Figure 8.
For additional information about TCXOs and data clock oscillators, please consult the latest version of the eem Electronic Engineers Master Catalog, the Gold Book, or similar publications.

Design an Off-Chip Reference

The user may design an off-chip crystal oscillator using discrete transistors or ICs specifically developed for crystal oscillator applications, such as the MC12061 MECL device. The reference signal from the MECL device is ac coupled to REFin. (See Figure 8.) For large amplitude signals (standard CMOS logic levels), dc coupling may be used.

Use of the On-Chip Oscillator Circuitry

The on-chip amplifier (a digital inverter) along with an appropriate crystal may be used to provide a reference source frequency. A fundamental mode crystal, parallel resonant at the desired operating frequency, should be connected as shown in Figure 18.
The crystal should be specified for a loading capacitance, CL_{L}, which does not exceed approximately 20 pF when used near the highest operating frequency of the MC145220. Assuming R1 $=0 \Omega$, the shunt load capacitance, C_{L}, presented across the crystal can be estimated to be:

$$
C_{L}=\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}+C_{a}+C_{\text {stray }}+\frac{C_{1} \cdot C_{2}}{C 1+C 2}
$$

where

$$
\mathrm{C}_{\mathrm{in}}=5 \mathrm{pF} \text { (see Figure 19) }
$$

$$
\mathrm{C}_{\text {out }}=6 \mathrm{pF} \text { (see Figure 19) }
$$

$$
\mathrm{C}_{\mathrm{a}}=1 \mathrm{pF}(\text { see Figure } 19)
$$

C 1 and $\mathrm{C} 2=$ external capacitors (see Figure 18)
$\mathrm{C}_{\text {Stray }}=$ the total equivalent external circuit stray capacitance appearing across the crystal terminals

The oscillator can be "trimmed" on-frequency by making either a portion or all of C1 variable. The crystal and associated components must be located as close as possible to the $R E F_{\text {in }}$ and $R E F_{\text {out }}$ pins to minimize distortion, stray capacitance, stray inductance, and startup stabilization time. Circuit stray capacitance can also be handled by adding the appropriate stray value to the values for $\mathrm{C}_{\text {in }}$ and $\mathrm{C}_{\text {out }}$. For this approach, the term $\mathrm{C}_{\text {stray }}$ becomes zero in the above expression for C_{L}.

Power is dissipated in the effective series resistance of the crystal, R_{e}, in Figure 20. The maximum drive level specified by the crystal manufacturer represents the maximum stress
that the crystal can withstand without damage or excessive shift in operating frequency. R1 in Figure 18 limits the drive level. The use of R1 is not necessary in most cases.

To verify that the maximum dc supply voltage does not cause the crystal to be overdriven, monitor the output frequency (f_{R}) at Output A as a function of supply voltage. ($\mathrm{REF}_{\text {out }}$ is not used because loading impacts the oscillator.) The frequency should increase very slightly as the dc supply voltage is increased. An overdriven crystal decreases in frequency or becomes unstable with an increase in supply voltage. The operating supply voltage must be reduced or R1 must be increased in value if the overdriven condition exists. Note that the oscillator start-up time is proportional to the value of R1.

Through the process of supplying crystals for use with CMOS inverters, many crystal manufacturers have developed expertise in CMOS oscillator design with crystals. Discussions with such manufacturers can prove very helpful. See Table 4.

* May be needed in certain cases. See text.

Figure 18. Pierce Crystal Oscillator Circuit

Figure 19. Parasitic Capacitances of the Amplifier and $\mathrm{C}_{\text {stray }}$

NOTE: Values are supplied by crystal manufacturer (parallel resonant crystal).

Figure 20. Equivalent Crystal Networks

RECOMMENDED READING

Technical Note TN-24, Statek Corp.
Technical Note TN-7, Statek Corp.
E. Hafner, "The Piezoelectric Crystal Unit - Definitions and Method of Measurement", Proc. IEEE, Vol. 57, No. 2, Feb 1969.
D. Kemper, L. Rosine, "Quartz Crystals for Frequency

Control", Electro-Technology, June 1969
P. J. Ottowitz, "A Guide to Crystal Selection", Electronic Design, May 1966.
D. Babin, "Designing Crystal Oscillators", Machine Design, March 7, 1985.
D. Babin, "Guidelines for Crystal Oscillator Design", Machine Design, April 25, 1985.

Table 4. Partial List of Crystal Manufacturers

Motorola - Internet Address
http://motorola.com \quad (Search for resonators)
United States Crystal Corp.
Crystek Crystal
Statek Corp.
Fox Electronics

NOTE: Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of crystal manufacturers.

$$
\begin{aligned}
\omega_{n} & =\sqrt{\frac{K_{\phi} K V C O}{N C}} \\
\zeta & =\frac{R}{2} \sqrt{\frac{K_{\phi} K_{V C O C}}{N}}=\frac{\omega_{n} R C}{2} \\
Z(s) & =\frac{1+s R C}{s C}
\end{aligned}
$$

NOTE:
For (A), using K_{ϕ} in amps per radian with the filter's impedance transfer function, $Z(s)$, maintains units of volts per radian for the detector/ filter combination. Additional sideband filtering can be accomplished by adding a capacitor C^{\prime} across R. The corner $\omega_{C}=1 / R C^{\prime}$ should be chosen such that ω_{n} is not significantly affected.
(B)

$$
\begin{aligned}
\omega_{n} & =\sqrt{\frac{K_{\phi} K_{V C O}}{N_{V C R}}} \\
\zeta & =\frac{\omega_{n} R_{2} C}{2}
\end{aligned}
$$

ASSUMING GAIN A IS VERY LARGE, THEN:

$$
Z(s)=\frac{R_{2} s C+1}{R_{1} s C}
$$

NOTE:
For (B), R_{1} is frequently split into two series resistors; each resistor is equal to R_{1} divided by 2 . A capacitor C_{C} is then placed from the midpoint to ground to further filter the error pulses. The value of C_{C} should be such that the corner frequency of this network does not significantly affect ω_{n}.

DEFINITIONS:
$\mathrm{N}=$ Total Division Ratio in Feedback Loop
K_{ϕ} (Phase Detector Gain) $=\mathrm{I}_{\mathrm{PD}}$ Dout $/ 2 \pi \mathrm{amps}$ per radian for $\mathrm{PD}_{\text {out }}$
K_{ϕ} (Phase Detector Gain) $=\mathrm{V}_{+} / 2 \pi$ volts per radian for $\phi \mathrm{V}$ and $\phi \mathrm{R}$
$\mathrm{KVCO}\left(\mathrm{VCO}\right.$ Transfer Function) $=\frac{2 \pi \Delta \mathrm{f} \mathrm{VCO}}{\Delta \mathrm{V}_{\mathrm{VCO}}}$ radians per volt
For a nominal design starting point, the user might consider a damping factor $\zeta \approx 0.7$ and a natural loop frequency $\omega_{\mathrm{n}} \approx\left(2 \pi f_{\mathrm{R}} / 50\right)$ where f_{R} is the frequency at the phase detector input. Larger ω_{n} values result in faster loop lock times and, for similar sideband filtering, higher f_{R}-related VCO sidebands.

Either loop filter (A) or (B) is frequently followed by additional sideband filtering to further attenuate $f_{R}-$ related VCO sidebands. This additional filtering may be active or passive.

RECOMMENDED READING:

Gardner, Floyd M., Phaselock Techniques (second edition). New York, Wiley-Interscience, 1979.
Manassewitsch, Vadim, Frequency Synthesizers: Theory and Design (second edition). New York, Wiley-Interscience, 1980.
Blanchard, Alain, Phase-Locked Loops: Application to Coherent Receiver Design. New York, Wiley-Interscience, 1976
Egan, William F., Frequency Synthesis by Phase Lock. New York, Wiley-Interscience, 1981.
Rohde, Ulrich L., Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs, NJ, Prentice-Hall, 1983.
Berlin, Howard M., Design of Phase-Locked Loop Circuits, with Experiments. Indianapolis, Howard W. Sams and Co., 1978.
Kinley, Harold, The PLL Synthesizer Cookbook. Blue Ridge Summit, PA, Tab Books, 1980.
Seidman, Arthur H., Integrated Circuits Applications Handbook, Chapter 17, pp. 538-586. New York, John Wiley \& Sons.
Fadrhons, Jan, "Design and Analyze PLLs on a Programmable Calculator," EDN. March 5, 1980.
AN535, Phase-Locked Loop Design Fundamentals, Motorola Semiconductor Products, Inc., 1970
AR254, Phase-Locked Loop Design Articles, Motorola Semiconductor Products, Inc., Reprinted with permission from Electronic Design, 1987.

AN1253, An Improved PLL Design Method Without ω_{n} and ζ, Motorola Semiconductor Products, Inc., 1995.

NOTES:

1. The $\mathrm{PD}_{\text {out }}$ output is fed to an external loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information.
2. For optimum performance, bypass the $\mathrm{V}+$ and $\mathrm{V}+$ ' pins to $G N D$ and GND^{\prime} with low-inductance capacitors.
3. The R counter is programmed for a divide value $=R E F_{\text {in }} / f R$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the VCO frequency divided by $f_{R}=N_{T}=N \cdot P+A$; this determines the values (N, A) that must be programmed into the N and A counters, respectively. P is the lower divide ratio of the dual-modulus prescaler (i.e., 32 or 64).
4. Pull-up voltage must be at the same potential as the V+pin or less. Pull-up device other than a resistor may be used. (Pull-up device not required when Output A is configured as $f_{R}, f_{R^{\prime}}, f v, f_{V}$, DATA OUT.)
5. LD and LD' are open-drain outputs. This allows the wired-OR configuration shown. Note that R1 and Q1 form the "pull-up device".
6. Use of Q1 is optional and depends on loading.

Figure 21. Application Showing Use of the Two Single-Ended Phase/Frequency Detectors

NOTES:

1. The ϕR and ϕV outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information. The ϕR and $\phi \vee$ outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.
2. For optimum performance, bypass the $\mathrm{V}+$ and $\mathrm{V}+{ }^{\prime}$ pins to $G N D$ and $G N D^{\prime}$ with low-inductance capacitors.
3. The R counter is programmed for a divide value $=R E F_{i n} / f R$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the $V C O$ frequency divided by $f_{R}=N T=N \cdot P+A$; this determines the values (N, A) that must be programmed into the N and A counters, respectively. P is the lower divide ratio of the dual-modulus prescaler (i.e., 32 or 64).
4. Pull-up voltage must be at the same potential as the $V+$ pin or less. Pull-up device other than a resistor may be used. (Pull-up device not required when Output A is configured as $f_{R}, f_{R^{\prime}}, f \mathrm{f}, \mathrm{fV}^{\prime}$, DATA OUT.)
5. LD and LD' are open-drain outputs. This allows the wired-OR configuration shown. Note that R1 and Q1 form the "pull-up device".
6. Use of Q1 is optional and depends on loading.

Figure 22. Application Showing Use of the Two Double-Ended Phase/Frequency Detectors

NOTES:

1. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information.
2. For optimum performance, bypass the $\mathrm{V}+$ and $\mathrm{V}+{ }^{\prime}$ pins to GND and GND^{\prime} with low-inductance capacitors.
3. The R counter is programmed for a divide value $=R E F_{i n} / f_{R}$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the $V C O$ frequency divided by $f_{R}=N T=N \cdot P+A$; this determines the values (N, A) that must be programmed into the N and A counters, respectively. P is the lower divide ratio of the dual-modulus prescaler (i.e., 32 or 64).
4. Pull-up voltage must be at the same potential as the $\mathrm{V}+$ pin or less. Pull-up device other than a resistor may be used. (Pull-up device not required when Output A is configured as $f_{R}, f_{R^{\prime}}, f V_{V}, f_{V}$, DATA OUT.)
5. LD and LD' are open-drain outputs. This allows the wired-OR configuration shown. Note that R1 and Q1 form the "pull-up device".
6. Use of Q1 is optional and depends on loading.

Figure 23. Application Showing Use of Both the Single- and Double-Ended Phase/Frequency Detectors

NOTE: See related Figures 25, 26, and 27.
Figure 24. Cascading Two Devices

Figure 25. Accessing the C or C^{\prime} Registers of Two Cascaded MC145220 Devices (32 Clock Cycles are Used)

Figure 26. Accessing the A or A^{\prime} Registers of Two Cascaded MC145220 Devices (48 Clock Cycles are Used)

Figure 27. Accessing the R Registers of Two Cascaded MC145220 Devices (40 Clock Cycles are Used)

PACKAGE DIMENSIONS

F SUFFIX
SOG (SMALL OUTLINE GULL-WING) PACKAGE
CASE 803C-01

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER
DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION
MAXIMUM MOLD PROTRUSION 0.15 (0.008) PER SIDE
. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.006) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	12.35	12.80	0.486	0.504
B	5.10	5.45	0.201	0.215
C	1.95	2.05	0.077	0.081
D	0.35	0.50	0.014	0.020
E	-	0.81	-	0.032
F	12.40^{*}		0.488^{\star}	
G	1.15	1.39	0.045	0.055
H	0.59	0.81	0.023	0.032
J	0.18	0.27	0.007	0.011
K	1.10	1.50	0.043	0.059
L	0.05	0.20	0.001	0.008
M	0°	10°	0°	10°
N	0.50	0.85	0.020	0.033
S	7.40	8.20	0.291	0.323

*APPROXIMATE

DT SUFFIX

TSSOP (THIN SHRUNK SMALL OUTLINE PACKAGE)
CASE 948D-03

NOTES: IMENSIONING AND TOLERANCING PER ANS DIMENSIONIN
Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
2. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. EXCEED 0.15 (0.006) PER SIDE.
4 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION SHALL NTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAM PIMENRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM EXCESS OF THE K DIM
MATERIAL CONDITION
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. RIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -U-

	MILIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	-	6.60	-	0.260
B	4.30	4.50	0.169	0.177
C	0.95	1.05	0.037	0.041
D	0.05	0.25	0.002	0.010
F	0.45	0.55	0.018	0.022
G	0.65 BSC		0.026 BSC	
H	0.275	0.375	0.010	0.015
J	0.09	0.24	0.004	0.009
J1	0.09	0.18	0.004	0.007
K	0.16	0.32	0.006	0.013
K1	0.16	0.26	0.006	0.010
L	6.30	6.50	0.248	0.256
M	0°	10°	0°	10°

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (4) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 1-602-244-6609 ~}$
Motorola Fax Back System - US \& Canada ONLY 1-800-774-1848
-http://sps.motorola.com/mfax/
HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,
4-32-1 Nishi-Gotanda, Shagawa-ku, Tokyo, Japan. 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

CUSTOMER FOCUS CENTER: 1-800-521-6274

