Low-Voltage CMOS 16-Bit Transparent Latch With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX16373 is a high performance, non-inverting 16-bit transparent latch operating from a 2.7 to 3.6 V supply. The device is byte controlled. Each byte has separate Output Enable and Latch Enable inputs. These control pins can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX16373 inputs to be safely driven from 5V devices.

The MC74LCX16373 contains 16 D-type latches with 3-state 5V-tolerant outputs. When the Latch Enable (LEn) inputs are HIGH, data on the Dn inputs enters the latches. In this condition, the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state outputs are controlled by the Output Enable (OEn) inputs. When OE is LOW, the outputs are enabled. When OE is HIGH, the standard outputs are in the high impedance state, but this does not interfere with new data entering into the latches.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5.4ns Maximum tpd
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When VCC $=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (20 A A) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

MC74LCX16373

LCX

LOW-VOLTAGE CMOS 16-BIT TRANSPARENT LATCH

PIN NAMES

Pins	Function
$\overline{\text { OEn }}$	Output Enable Inputs
LEn	Latch Enable Inputs
D0-D15	Inputs
O0-O15	Outputs

LOGIC DIAGRAM

Inputs			Outputs		Onputs	Outputs	
LE1	OE1	D0:7	O0:7	LE2	OE2	D8:15	O8:15
X	H	X	Z	X	H	X	Z
H	L	L	L	H	L	L	L
H	L	H	H	H	L	H	H
L	L	X	O0	L	L	X	O

$\mathrm{H}=$ High Voltage Level; L = Low Voltage Level; Z = High Impedance State; X = High or Low Voltage Level and Transitions Are Acceptable, for ICC reasons, DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{I}} \leq+7.0$		V
V_{O}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	Note 1.	V
IIK	DC Input Diode Current	-50	$\mathrm{V}_{1}<\mathrm{GND}$	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
I°	DC Output Source/Sink Current	± 50		mA
${ }^{\text {ICC }}$	DC Supply Current Per Supply Pin	± 100		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Output in HIGH or LOW State. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}		$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
${ }^{\mathrm{O}} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{O}} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V , $V_{C C}=3.0 \mathrm{~V}$	0		10	ns / V

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 2.)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 2.)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage		$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{lOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{loL}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

[^0]DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
I	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
IOZ	3-State Output Current	$\begin{gathered} 2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\text {IL }} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; $\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		20	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 20	$\mu \mathrm{A}$
$\Delta_{\text {l }} \mathrm{CC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ($\mathrm{t} R=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits				Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay D_{n} to O_{n}	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.9 \end{aligned}$	ns
tpLH tPHL	Propagation Delay LE to O_{n}	3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.4 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Output Enable Time to HIGH and LOW Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time from HIGH and LOW Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.3 \end{aligned}$	ns
$\mathrm{t}_{\text {S }}$	Setup TIme, HIGH or LOW D_{n} to LE	3	2.5		2.5		ns
$t_{\text {h }}$	Hold TIme, HIGH or LOW D_{n} to LE	3	1.5		1.5		ns
t_{w}	LE Pulse Width, HIGH	3	3.0		3.0		ns
$\begin{aligned} & \text { toshl } \\ & \text { tOSLH } \end{aligned}$	Output-to-Output Skew (Note 3.)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			ns

3. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
VOLP	Dynamic LOW Peak Voltage (Note 4.)	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{CL}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V
V OLV	Dynamic LOW Valley Voltage (Note 4.)	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

4. Number of outputs defined as " n ". Measured with " $\mathrm{n}-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	pF	
CPD	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	20

WAVEFORM 1 - PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

Figure 1. AC Waveforms

TEST	SWITCH
${ }^{\text {tPLH, }}$ tPHL	Open
tPZL, tPLZ	6 V
Open Collector/Drain tPLH and tPHL	6 V
tPZH, tPHZ	GND

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
Figure 2. Test Circuit

OUTLINE DIMENSIONS

DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 1201-01
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
2. CONTROLLING DIMENSION:MILIMETER
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE MOLD FLASH, PROTRUSIONS OR GATE SHALL NOT EXCEED 0.15 (0.006) PER SIDE
SIIMENSION K DOES NOT INCLUDE DAMBAR
4. DIMENSION K DOES NOT INCLUDE DAM

PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTALIN
EXCESS OF THE KDIMENSION AT MAXIMUM MATERIAL CONDITION.
5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
6. DIMENSIONS A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	12.40	12.60	0.488	0.496		
B	6.00	6.20	0.236	0.244		
C	-	1.10	-	0.043		
D	0.05	0.15	0.002	0.006		
F	0.50	0.75	0.020	0.030		
G	0.50		BSC	0.0197		
HSC						
J	0.37	-	0.015	-		
J1	0.09	0.20	0.004	0.008		
K	0.09	0.16	0.004	0.006		
K1	0.17	0.27	0.007	0.011		
L	7.95	8.23	0.007	0.009		
M	0°	8°	0.313	0.325		

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (4) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217. 1-800-441-2447

Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 602-244-6609 ~}$ INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MOTOROLA

[^0]: 2. These values of V_{I} are used to test DC electrical characteristics only.
