Order this document by MC145750/D

Product Preview QPSK Encoder

The MC145750 is a silicon gate HCMOS device designed to encode $\pi/4$ -shift QPSK baseband signals. The device contains two 10-bit DACs for the I/Q signal, Root-Nyquist digital filtering, and burst rising and falling edge processing for digital RF communication equipment. Primary applications for this device are in products that will be used in PHS (384 kbps) and PDC (42 kbps). It will perform up to 800 kbps data rate. It also contains PN511 random pattern generator and timing generator with PLL.

- Root–Nyquist Digital Filtering (Coefficient = 0.5)
- Burst Edge Processing Circuitry (Ramp–Up and –Down)
- Two 10-Bit DACs for I/Q Output
- Operating Voltage Range: 2.7 to 5.5 V
- PN511 Random Pattern Generator
- Conformance to RCR Standard for PHS, PDC
- Variable Data Transmission Rate up to 800 kbps (V_{DD} = 5 V)
- Timing Generator with PLL
- QPSK Mode, Burst, and Continuous I/Q Signal Output is Performed
- Companion Device is MRFIC0001

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

REV 2 10/95

© Motorola, Inc. 1995

PIN ASSIGNMENT

MC145750

BLOCK DIAGRAM

INPUT/OUTPUT TIMING RELATIONS

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	– 0.5 to + 7	V
DC Input Voltage	Vin	– 0.5 to V _{DD} + 0.5	V
Power Dissipation	PD	500	mW
Storage Temperature	T _{stg}	– 65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
DC Supply Voltage	V _{DD}	2.7	3.3	5.5	V
DC Input Voltage	V _{in}	0	—	V _{DD}	V
Operating Temperature Range	TA	- 20	25	85	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C, TXD = L, Normal Mode)

Parameters		Symbol	Condition	Min	Тур**	Max	Unit
DC Supply Current		I _{dd1}	ERST = L	—	0.25 0.5	mA	
$V_{DD} = 3 V$	DRATE = L	I _{dd2}	DS = L	—	5.0	6.0	
	DRATE = H	I _{dd3}		—	1.5	1.8	
	DRATE = L	I _{dd4}	DS = Burst Input*	—	5.0	6.0	
	DRATE = H	I _{dd5}		—	1.5	1.8	
	DRATE = L	I _{dd6}	DS = Continual Input	—	8.0	10.0	
	DRATE = H	ldd7		—	2.0	2.6	
DC Supply Current		ldd1	ERST = L	—	0.5	3.0	mA
$V_{DD} = 5 V$	DRATE = L	I _{dd2}	DS = L	—	27.0	33.0	
	DRATE = H	I _{dd3}		—	17.0	19.0	
	DRATE = L	I _{dd4}	DS = Burst Input*	—	30.0	33.0	
	DRATE = H	I _{dd5}		—	18.0	20.0	
	DRATE = L	Idd6	DS = Continual Input	_	33.0	37.0	
	DRATE = H	I _{dd7}		_	18.0	20.0	

*625 μ s burst/5 ms period (DRATE = L) at DCLK = 384 kHz.

6.6 ms burst/20 ms period (DRATE = H) at DCLK = 42 kHz.

** Typical numbers are not guaranteed.

ANALOG CHARACTERISTICS (T_A = 25°C)

Parameters		Symbol	Condition	Min	Тур**	Max	Unit
Output Swing Level I/Q Out	V _{DD} = 3 V	Vout	$RL = k\Omega, TXD = L$	500	550	600	mV p–p
	V _{DD} = 5 V		Normal Mode	520	570	620	
Output Swing Imbalance		ΔV_{out}		- 0.5	0	0.5	dB
Output DC Level	V _{DD} = 3 V	Vout	DS = L	800	820	840	mV
I/Q Out	V _{DD} = 5 V			780	800	820	
Output Swing Imbalance		ΔV_{DD}		_	—	20	
Out-of-Band Noise Level	V _{DD} = 5 V	V _{in}	600 kHz	—	- 50	_	dB
			900 kHz	—	- 55	_	
DC Output Resistance		Rout	I _{out} /Q _{out}	_	50	100	Ω

*DAref1 = H at V_{DD} = 3 V, DAref3 = H at V_{DD} = 5 V **Typical numbers are not guaranteed.

SWITCHING CHARACTERISTICS (T_A = 25°C)

Parameters		Symbol	Condition	Min	Тур*	Max	Unit
Input Voltage	High–Level	VIH		V _{DD} x 0.7	—	—	V
	Low-Level	VIL		—	—	V _{DD} x 0.3	
Output Voltage	High–Level	∨он	BW, PNO	V _{DD} x 0.9	—	—	
	Low-Level	VOL		—	—	V _{DD} x 0.1	
Data Set–Up Time		t _{su}	TXD, DS, STBY	10	—	—	ns
Data Hold Time		th	TXD, DS, STBY	10	—	—	
Data Output Propagation Delay		^t pd	BW, PNO	—	1.5	3	μs
I/Q Output Propagation Delay	/	TD	I _{out} , Q _{out}	—	4	6	
Data Rate	V _{DD} = 3 V		DRATE = L	—	_	450	kbps
			DRATE = H	—	—	55	
	V _{DD} = 5 V		DRATE = L	—	—	800	
			DRATE = H	—	—	100	
Clock Input Duty Cycle		DCLK		45	50	55	%
VCO Oscillation Frequency	V _{DD} = 3 V	fVCO1		—	—	20	MHz
	V _{DD} = 5 V	fVCO2		_	_	32	

* Typical numbers are not guaranteed.

Figure 1. Timing Diagram

PIN DESCRIPTIONS

POWER SUPPLY

Vss

Digital Ground (Pins 6, 44)

These are the negative power supply input pins to the digital portion of the device and are connected to ground (0 V).

VDD

Positive Power Supply Input (Pins 7, 43)

These are the positive power supply input pins to the digital portion of the device. Typical operating voltage range is 3.3 V at DAref3 = H, 5.0 V at DAref1 = H. Power should be fed simultaneously with DAV_{DD} pin in order to avoid any possible damage to the device.

DAVDD

Positive Power Supply Input for DACs (Pin 13)

This is the positive power supply input pin to the analog portion of the device. Typical operating voltage range is 2.7 V to 5.5 V.

DAVSS

Analog Ground for DACs (Pin 14)

This is the negative power supply pin to the analog portion of the device and is connected to ground.

MODE CONTROL AND TEST

MODE0 - MODE2

Normal/Test Mode Select (Pins 1, 2, 3)

These pins must be connected to ground for normal operation. For system test, PN pattern generation mode will be performed when MODE0 = H and MODE1, MODE2 = L. PN511 signal is fed to the encoder instead of input data from TXD pin. Data shift timing is the same as the normal operation mode and burst timing indicated by DS pin is still valid for the device. The PN511 signal is monitored at the PNO pin.

TEST

Test Mode (Pin 4)

The device operates normally while this pin is held low. When this signal is high, the device enters into factory test mode. Only one mode is allowed to be enacted by user for PN Mode.

DRATE

Data-Rate Select (Pin 9)

This pin can select high data rate when it is low, such as in PHS applications.

QPSK

(D)QPSK/π/4–Shift QPSK Mode Select (Pin 10)

The device operates as a $\pi/4$ –QPSK Encoder when this pin is held high. By making this pin low, it functions as non-shift differential QPSK Encoder. All of the functions are the same in both modes.

PN0/TB8

PN511 Test Pattern Output/Test Bus 8 (Pin 23)

This is the output data of PN511 test–pattern in normal mode. When the PN pattern generator outputs to this pin, it can be output I/Q pins and data from TXD pin may be ignored. If the DS signal is L, I/Q pins stop but PN data stream may be output.

TB0 – TB7

Test Bus (Pins 24, 26 - 32)

These pins are used in factory test and should be connected to ground for normal operation.

PLL

Int/Ext PLL Clock Select (Pin 41)

When this pin is connected to ground, the PLL is active and timing will be generated internally. When this pin is connected to V_{DD} , timing should be applied to the ECLK pin.

DIGITAL INTERFACE PINS

BW/TB9

Burst Window Output/Test Bus 9 (Pin 22)

This output indicates when modulated baseband I/Q signals are output from this device. This pin is used as the transmission control signal for saving power for RF.

ECLK

External Clock Input (Pin 42)

When the internal timing generator with PLL is not used in the system, this pin must have 15.36 MHz applied as a system clock for this device. This pin is connected to ground for normal operation.

DCLK

Data Shift Clock Input (Pin 45)

This is the shift clock input for the transmit data input and is typically 384 kHz for the PHS (DRATE Pin = L) and 42 kHz for the PDC (DRATE Pin = H) application. The data input occurs at the rising edge of the DCLK. For burst–type systems such as the TDMA data transmission applications, this signal must be synchronized with the rising/falling edge of the DS pin (Data Slot Timing Input).

DS/STBY

Data Slot Timing/Standby Input (Pin 46)

For burst-type, this input signal indicates when transmit data are valid for the device. Its duration must be equal with the number of input data to the device, and its transition must be aligned with the rising edge of the DCLK signal.

When a logic L is applied to this pin, all digital portions except the timing generator are not clocked and the device is in a low power dissipation mode. When a logic H is applied continuously, all input data are encoded as valid data.

TXD

Transmit Data Input (Pin 47)

Data bit streams to be transmitted are input to this pin. The data is valid only when the DS (Pin 46) is asserted (high). Its transition should be synchronized with rising edge of the DCLK (Pin 45).

ERST/PDN

External Reset/Power Down Input (Pin 48)

When a logic L is applied to this pin, it forces a complete power down. When at start up, V_{DD} goes high, it is recommended that a logic L, then a logic H be applied to this pin to start up and reset all digital portions.

ANALOG INTERFACE PINS

Qout

Filtered Quadrature–Phase Output (Pin 15)

This is the modulated quadrature–phase signal output and the amplitude is typically 550 mV p–p at V_{DD} = 3 V in PN test mode. The output dc resistance is approximately 50 Ω .

lout

Filtered In–Phase Output (Pin 20)

This is the modulated in–phase signal output and amplitude is typically 500 mV p–p at V_{DD} = 3 V in PN test mode. The output dc resistance is approximately 50 Ω .

DAC AND PLL SETTING

DAb

Reference Bias Setting Pin to DACs (Pin 12)

A resistor connected to ground from this pin determines the reference current value for internal DACs. This resistor's value is 200 k Ω typically.

DAref

Ripple Filter Capacitor (Pin 16)

A capacitor connected to ground from this pin acts as a ripple filter for the internal DACs' reference voltage. This capacitor's value is 0.1μ F, typically.

DAref1 – DAref3

Reference Bias Setting to DACs (Pin 17 – 19)

These pins determine the reference voltage for internal DACs in conjunction with DAb pin. At 3 V operation, DAref1 pin should be connected to V_{DD}. DAref2 pin should be connected to V_{DD} at 3.3 V. DAref3 pin should be connected to V_{DD} at 5 V. The two other pins for the respective cases must be left open.

PB1, PB2

PLL Bias (Pins 35, 38)

This pin determines the bias of the PLL. Its recommended values are shown in Table 1 and it depends on operating voltage.

Cf

Loop Filter Capacitor (Pin 39)

Input from Cf pin is fed directly as the internal VCO control signal.

PCO

Phase Comparator Output (Pin 40)

Connect an LPF as loop filter for the PLL. Refer to the application figure for recommended values.

	Pin	L	н	Remarks
3	MODE0	Normal Mode	PN Pattern	These settings are independent of power supply.
10	QPSK	Non-Shift	/4–Shift	
9	DRATE	High Speed	Low Speed	To be determined setting high or low speed data rate.
17	DAref1	—	V _{DD} = 5 V	These pins should be held high depending on power supply voltage and
18	DAref2	—	V _{DD} 3.3 V	others should be left open.
19	DAref3	_	V _{DD} 3.0 V	
41	PLL	PLL Operation Mode	Ext Clock Mode	In case of external clock mode, TX data rate must be set to a frequency of $1/40$ when DRATE = L, and must be set to a frequency of $1/320$ when DRATE = H. Max data rate is limited by power supply.
48	ERST/PDN	Power Down	Normal Operation	Digital circuits reset condition will be released by rising edge of this input.

Table 1. Function Table

DEVICE DESCRIPTION

π/4–Shift QPSK Encoding

RCR standard (STD–28) specifies the basic configuration of this modulation scheme as shown in Figure 2. First, serial data input is converted to Xk/Yk parallel streams. Then its value is compared with one previous symbol lk/Qk, respectively, whether or not there is a change of polarity. If there is a change, result is coded as 1. This two–bit π r (di–bit) is called symbol, hence symbol rate is just half of the data input rate to be modulated.

Phase transitions are determined as shown in Figure 3, with respect to four di-bit values of Xk, Yk. (As is shown, there should be at least $\pi/4$ of phase shift in each symbol timing unlike plain QPSK.) Actual in-phase outputs are fed to a quadrature modulator circuit, and it is recommended that a 2- to 3-order LPF be used, which may be used as a level shifter and dc offset compensation circuitry at the same time.

The reference voltage for the DACs is given by connecting either of DAref1:3 to V_{DD} according to the operating voltage used. It is preferable not to have this voltage vary, since I/Q output levels are affected.

Timing Generator

The PLL is intended in order to generate all required timing signals for the devices. The VCO oscillating at the PN511 pattern rate is utilized when some characteristics are measured. By pulling MODE0 pin high, the device generates this sequence. It is a useful simple measurement for the occupied power bandwidth and the out–of–band power level. The sequence itself can also be monitored at the PNO pin.

This circuit is reset by an external reset signal while the low-state of DS is not valid for initializing the generator.

START-UP SEQUENCE

To ensure stability and to initialize the internal ROM and encoder, the start-up sequence should be done at powerup. Refer to Figure 4.

Di-Bit Input

Xk	Yk	Phase Shift
0	0	π/4
0	1	3π/4
1	0	$-\pi/4$
1	1	- 3π/4

Figure 3. Phase Diagram

Figure 4. Start–Up Sequence

Figure 6. DRATE Equals H: 3 V Operation

Figure 7. I/Q Output Interface Circuit 1

Figure 8. I/Q Output Interface Circuit 2

Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of measurement equipment suppliers.

Figure 9. Modulation Accuracy Measurement Schematic

Figure 10. I–Q Pattern

Figure 11. I–Q Pattern

Figure 12. Q–Eye Pattern

PACKAGE DIMENSIONS

VFU SUFFIX PLASTIC VQFP CASE 932-02

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DATUM PLANE -AB-IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
 DATUMS -T-, -U-, AND -Z- TO BE DETERMINED AT DATUM PLANE -AB-.
 DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -AC-.
 DIMENSIONS SA AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -AB-.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DALBMAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.350 (0.014).
 MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003).
- 0.0076 (0.0003). SACT SHAPE OF EACH CORNER IS OPTIONAL.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	7.000	BSC	0.276	BSC
A1	3.500	BSC	0.138	BSC
В	7.000	BSC	0.276	BSC
B1	3.500	BSC	0.138	BSC
С	1.400	1.600	0.055	0.063
D	0.170	0.270	0.007	0.011
Е	1.350	1.450	0.053	0.057
F	0.170	0.230	0.007	0.009
G	0.500	BASIC	0.020 BASIC	
Н	0.050	0.150	0.002	0.006
J	0.090	0.200	0.004	0.008
K	0.500	0.700	0.020	0.028
М	12°	REF	12 °REF	
Ν	0.090	0.160	0.004	0.006
Р	0.250	BASIC	0.010 BASIC	
Q	1°	5°	1°	5°
R	0.150	0.250	0.006	0.010
S	9.000	BSC	0.354	BSC
S1	4.500 BSC		0.177 BSC	
۷	9.000	BSC	0.354	BSC
V1	4.500	BSC	0.177	BSC
W	0.200	REF	0.008	REF
Х	1.000	REF	0.039	REF

R

κ

X

DETAIL AD

GAUGE PLANE 0.250 (0.010)

Q

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the are gistered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us: USA/EUROPE: Motorola Literature Distribution;

P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com

0

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

