Designer's™ Data Sheet **SWITCHMODE**[™] **NPN Bipolar Power Transistor** For Switching Power Supply Applications

The BUL44/BUL44F have an applications specific state-of-the-art die designed for use in 220 V line operated Switchmode Power supplies and electronic light ballasts. These high voltage/high speed transistors offer the following:

- Improved Efficiency Due to Low Base Drive Requirements:
 - High and Flat DC Current Gain hFF
 - Fast Switching
 - No Coil Required in Base Circuit for Turn-Off (No Current Tail)
- Full Characterization at 125°C
- Tight Parametric Distributions are Consistent Lot-to-Lot
- Two Package Choices: Standard TO-220 or Isolated TO-220
- BUL44F, Case 221D, is UL Recognized to 3500 VRMS: File #E69369

MAXIMUM RATINGS

Rating	Symbol	BUL44	BUL44F	Unit
Collector–Emitter Sustaining Voltage	VCEO	4(00	Vdc
Collector–Emitter Breakdown Voltage	VCES	7(Vdc	
Emitter-Base Voltage	VEBO	9.	Vdc	
Collector Current — Continuous — Peak(1)				
Base Current — Continuous — Peak(1)	I _B I _{BM}	1. 2.	Adc	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	VISOL		4500 3500 1500	Volts
Total Device Dissipation $(T_C = 25^{\circ}C)$ Derate above $25^{\circ}C$	PD	50 0.4	25 0.2	Watts W/°C
Operating and Storage Temperature	Tj, T _{stg}	– 65 t	°C	

THERMAL CHARACTERISTICS

Rating	Symbol	BUL44	BUL44F	Unit
Thermal Resistance — Junction to Case — Junction to Ambient	R _θ JC R _θ JA	2.5 62.5	5.0 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	ТL	260		°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

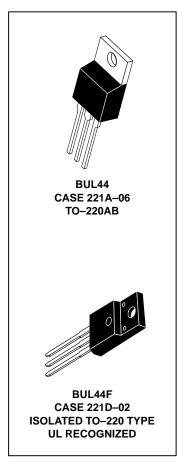
Characteristic	Symbol	Min	Тур	Max	Unit
----------------	--------	-----	-----	-----	------

OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (I_C = 100 mA, L = 25 mH) 400 Vdc VCEO(sus) Collector Cutoff Current (V_{CE} = Rated V_{CEO} , I_B = 0) 100 μAdc **ICEO** Collector Cutoff Current (V_{CE} = Rated V_{CES}, V_{EB} = 0) 100 μAdc ICES $(T_{C} = 125^{\circ}C)$ _____ ____ 500 $(V_{CE} = 500 \text{ V}, V_{EB} = 0)$ $(T_{C} = 125^{\circ}C)$ ____ ____ 100 Emitter Cutoff Current ($V_{EB} = 9.0 \text{ Vdc}, I_{C} = 0$) 100 μAdc **IEBO** (1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle \leq 10%. (continued)

(2) Proper strike and creepage distance must be provided.

Designer's and SWITCHMODE are trademarks of Motorola, Inc.

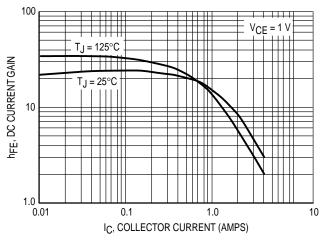
Designer's Data for "Worst Case" Conditions - The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.


Preferred devices are Motorola recommended choices for future use and best overall value

REV 1

*Motorola Preferred Device

POWER TRANSISTOR 2.0 AMPERES **700 VOLTS** 40 and 100 WATTS


© Motorola, Inc. 1995

BUL44 BUL44F

ELECTRICAL CHARACTERISTICS — continued ($T_C = 25^{\circ}C$ unless otherwise noted)

	Symbol	Min	Тур	Max	Unit				
ON CHARACTERISTICS	6								
Base–Emitter Saturatio	V _{BE(sat)}		0.85 0.92	1.1 1.25	Vdc				
Collector–Emitter Satur ($I_C = 0.4$ Adc, $I_B = 40$	V _{CE(sat)}	_	0.20 0.20	0.5 0.5	Vdc				
$(I_{C} = 1.0 \text{ Adc}, I_{B} = 0.1)$			0.25 0.25	0.6 0.6					
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = 0.2 \text{ Adc}, \text{ V}_{CE} = 5.0 \text{ Vdc}) \\ (I_{C} = 0.4 \text{ Adc}, \text{ V}_{CE} = 1.0 \text{ Vdc}) \\ (I_{C} = 1.0 \text{ Adc}, \text{ V}_{CE} = 1.0 \text{ Vdc}) \end{array} (T_{C} = 1.0 \text{ Vdc}) \end{array} $					hFE	14 — 12 12 8.0	— 32 20 20 14	34 	_
$(T_{C} = 125^{\circ}C)$ (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)						7.0 10	13 22	_	
Current Gain Bandwidt	h (I _C =	0.5 Adc, V _{CE} = 10	Vdc, f =	1.0 MHz)	fт	_	13	_	MHz
Output Capacitance (V	-				C _{OB}	_	38	60	pF
Input Capacitance (VE	B = 8.0	V)			CIB		380	600	pF
		$(I_C = 0.4 \text{ Adc})$	1.0 μs	(T _C = 125°C)		-	2.5 2.7		
Dynamic Saturation Vol Determined 1.0 µs ar	nd	VCC = 300 V)	3.0 µs	(T _C = 125°C)			1.3 1.15		Vdc
3.0 μ s respectively after rising I _{B1} reaches 90% of final I _{B1}			1.0 μs	(T _C = 125°C)	^V CE(dsat)		3.2 7.5		Vuc
			3.0 µs	(T _C = 125°C)		—	1.25 1.6		
SWITCHING CHARACT	ERISTI	CS: Resistive Loa	d (D.C. ≤	10%, Pulse Widt	h = 20 μs)				
Turn–On Time	(I _C = I _{B2} =	= 0.4 Adc, I _{B1} = 40 = 0.2 Adc, V _{CC} = 3	mAdc 00 V)	(T _C = 125°C)	ton	_	40 40	100	ns
Turn–Off Time		= 0.4 Adc, I _{B1} = 40 = 0.2 Adc, V _{CC} = 3		(T _C = 125°C)	toff	_	1.5 2.0	2.5 —	μs
Turn–On Time	(I _C = I _{B1} =	= 1.0 Adc, I _{B1} = 0.2 = 0.5 Adc, V _{CC} = 3	Adc 00 V)	(T _C = 125°C)	ton	_	85 85	150 —	ns
Turn–Off Time	$(I_C = 1.0 \text{ Adc}, I_{B1} = 0.2 \text{ Adc} I_{B2} = 0.5 \text{ Adc}, V_{CC} = 300 \text{ V})$ $(T_C = 125^{\circ}\text{C})$				toff	_	1.75 2.10	2.5 —	μs
WITCHING CHARACT	ERISTI	CS: Inductive Loa	d (V _{clam}	p = 300 V, V _{CC} =	= 15 V, L = 200 μH)			
Fall Time		= 0.4 Adc, I _{B1} = 40 = 0.2 Adc)	mAdc	(T _C = 125°C)	t _{fi}	_	125 120	200	ns
Storage Time				(T _C = 125°C)	t _{si}	_	0.7 0.8	1.25	μs
Crossover Time				(T _C = 125°C)	t _C	_	110 110	200	ns
Fall Time		= 1.0 Adc, I _{B1} = 0.2 = 0.5 Adc)	Adc	(T _C = 125°C)	t _{fi}	_	110 120	175 —	ns
Storage Time				(T _C = 125°C)	t _{Si}		1.7 2.25	2.75 —	μs
Crossover Time				(T _C = 125°C)	t _C		180 210	300 —	ns
Fall Time		= 0.8 Adc, I _{B1} = 160 = 160 mAdc)) mAdc	(T _C = 125°C)	t _{fi}	70 —	— 180	170 —	ns
Storage Time]			(T _C = 125°C)	t _{si}	2.6 —	 4.2	3.8 —	μs
Crossover Time $(T_{C} = 125^{\circ}C)$					t _C		190	300	ns

TYPICAL STATIC CHARACTERISTICS

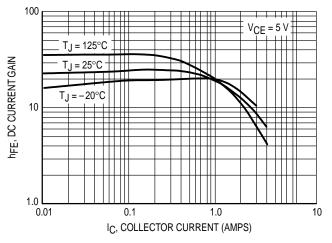


Figure 2. DC Current Gain at 5 Volts

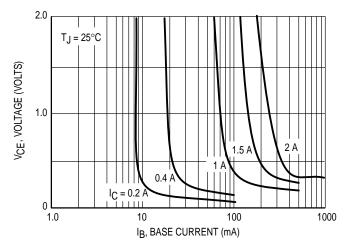


Figure 3. Collector Saturation Region

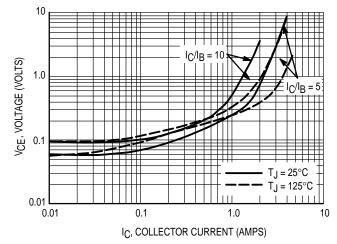


Figure 4. Collector–Emitter Saturation Voltage

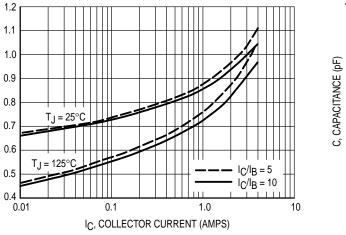


Figure 5. Base–Emitter Saturation Region

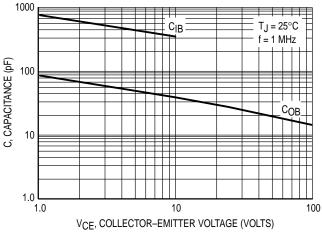
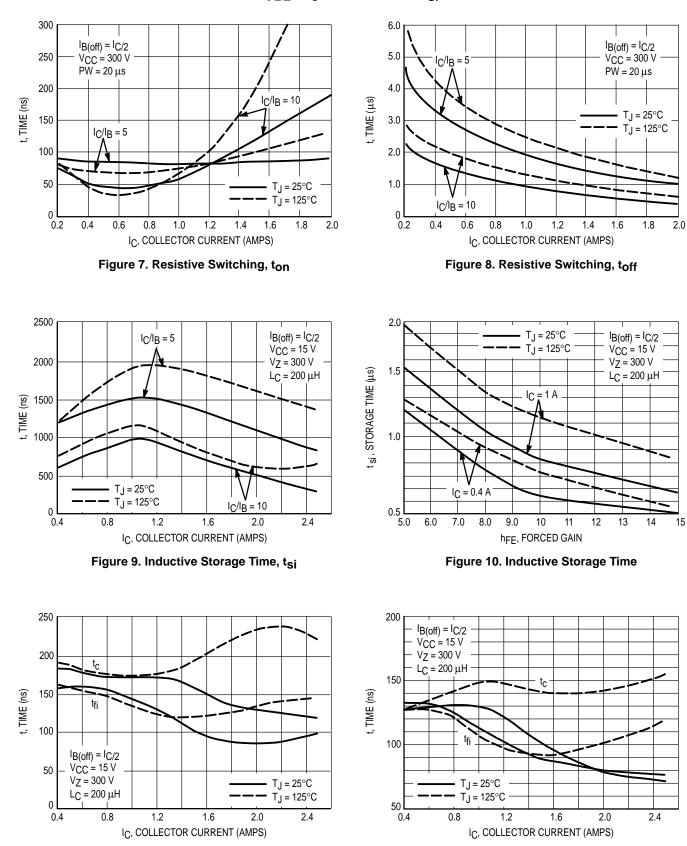



Figure 6. Capacitance

VBE, VOLTAGE (VOLTS)

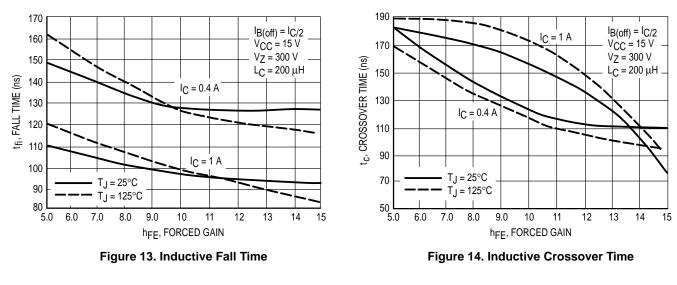

TYPICAL SWITCHING CHARACTERISTICS (IB2 = IC/2 for all switching)

Figure 12. Inductive Switching,

t_c and t_{fi} I_C/I_B = 10

Figure 11. Inductive Switching, t_c and t_{fi} I_C/I_B = 5

TYPICAL SWITCHING CHARACTERISTICS (IB2 = IC/2 for all switching)

GUARANTEED SAFE OPERATING AREA INFORMATION

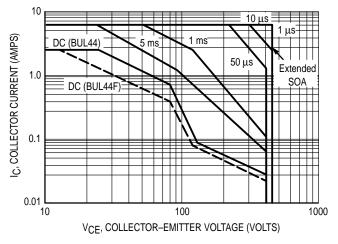


Figure 15. Forward Bias Safe Operating Area

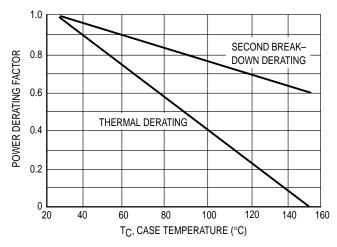


Figure 17. Forward Bias Power Derating

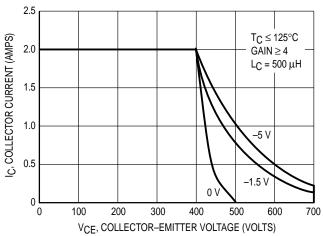


Figure 16. Reverse Bias Switching Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of figure 15 is based on T_C = 25°C; T_I(PK) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when T_C > 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on figure 15 may be found at any case temperature by using the appropriate curve on figure 17. TJ(PK) may be calculated from the data in figure 20 and 21. At any case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base-to-emitter junction reverse-biased. The safe level is specified as a reversebiased safe operating area (Figure 16). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

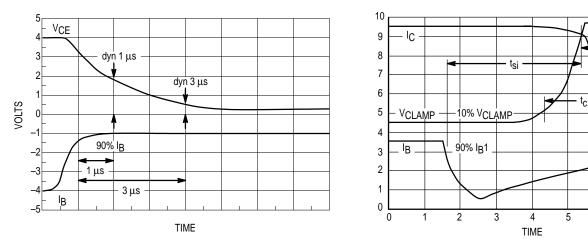


Figure 18. Dynamic Saturation Voltage Measurements

90% IC

t_{fi} 🗩

6

10% IC

7

8

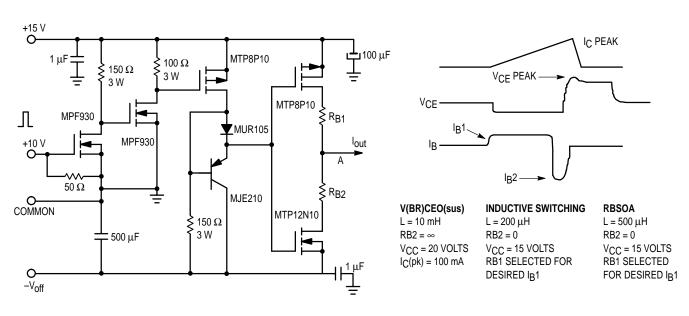


Table 1. Inductive Load Switching Drive Circuit

TYPICAL THERMAL RESPONSE

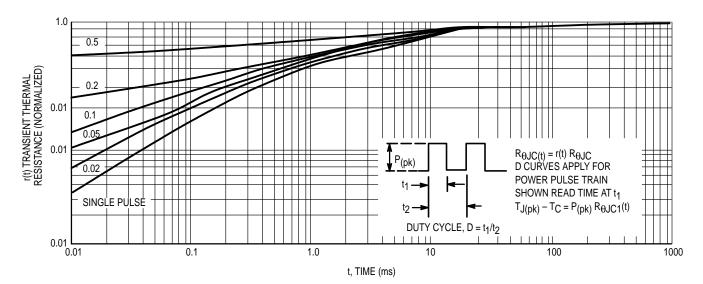


Figure 20. Typical Thermal Response ($Z_{\theta JC}(t)$) for BUL44

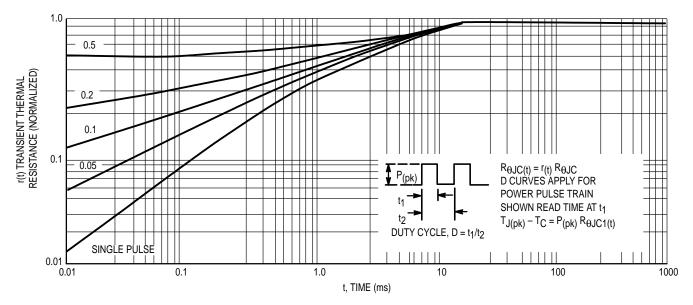
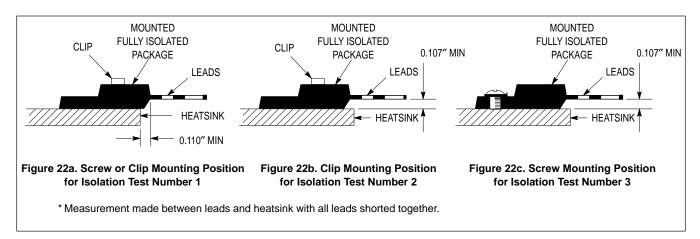
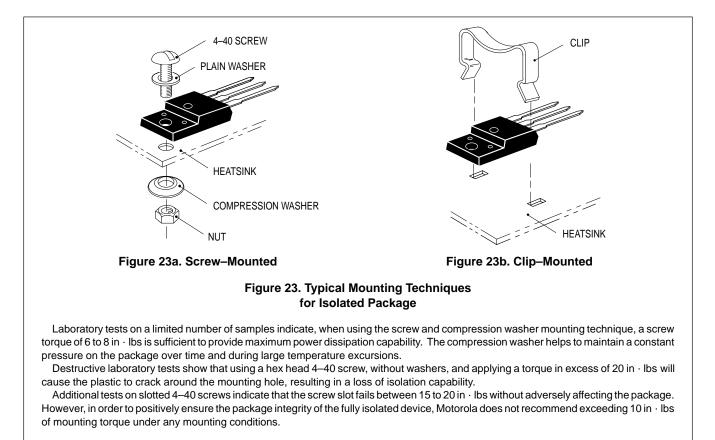
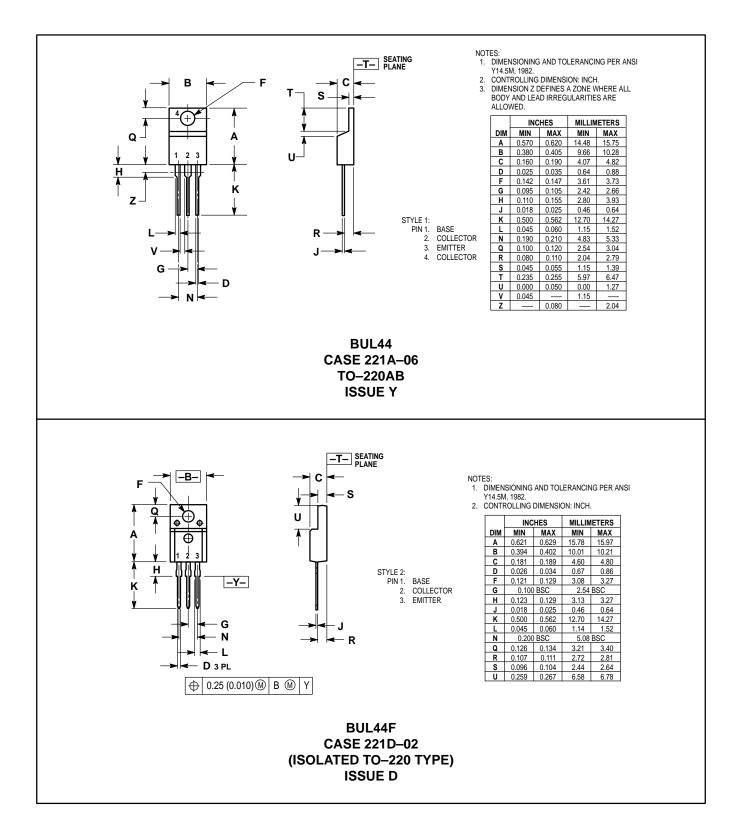




Figure 21. Typical Thermal Response (Z $_{\theta JC}(t)$) for BUL44F

TEST CONDITIONS FOR ISOLATION TESTS*



** For more information about mounting power semiconductors see Application Note AN1040.

BUL44 BUL44F

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (\widehat{M}) are registered trademarks of Motorola, Inc. Is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

 \Diamond

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

