MC14512B

8-Channel Data Selector

The MC14512B is an 8-channel data selector constructed with MOS P -channel and N -channel enhancement mode devices in a single monolithic structure. This data selector finds primary application in signal multiplexing functions. It may also be used for data routing, digital signal switching, signal gating, and number sequence generation.

- Diode Protection on All Inputs
- Single Supply Operation
- 3-State Output (Logic "1", Logic "0", High Impedance)
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, I_{\text {out }}$	Input or Output Current (DC or Transient), per Pin	± 10	mA
P_{D}	Power Dissipation, per Package \dagger	500	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. \dagger Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
Ceramic "L" Packages: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $100^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
TRUTH TABLE

\mathbf{C}	\mathbf{B}	\mathbf{A}	Inhibit	Disable	\mathbf{Z}
0	0	0	0	0	X 0
0	0	1	0	0	X 1
0	1	0	0	0	X 2
0	1	1	0	0	X 3
1	0	0	0	0	X 4
1	0	1	0	0	X 5
1	1	0	0	0	X 6
1	1	1	0	0	X 7
X	X	X	1	0	0
X	X	X	X	1	High
					Impedance

X = Don't Care

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Characteristic	Symbol	$\begin{aligned} & \text { VDD } \\ & \text { Vdc } \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ \#	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D}$ or 0 $V_{\text {in }}=0$ or $V_{D D}$ " 1 " Level	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	-	$\begin{aligned} & \hline 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	-	Vdc
$\begin{array}{\|ll} \hline \text { Input Voltage } & \text { " } 0 " \text { Level } \\ \text { (} \left.\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) & \\ & \\ & \\ & \\ \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) & \\ \text { (} \left.\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) & \end{array}$	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	二	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
Output Drive Current (VOH $=2.5 \mathrm{Vdc})$ Source $(\mathrm{VOH}=4.6 \mathrm{Vdc})$ $\left(\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	${ }^{\mathrm{I}} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \\ \hline \end{gathered}$	二	$\begin{array}{r} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{array}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -2.25 \\ & -8.8 \end{aligned}$	- - -	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{aligned} & (\mathrm{VOL}=0.4 \mathrm{Vdc}) \\ & (\mathrm{VOL}=0.5 \mathrm{Vdc}) \\ & (\mathrm{VOL}=1.5 \mathrm{Vdc}) \end{aligned}$	${ }^{\text {IOL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{aligned} & 0.88 \\ & 2.25 \\ & 8.8 \end{aligned}$	-	0.36 0.9 2.4	-	mAdc
Input Current	1 in	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(\mathrm{V}_{\mathrm{in}}=0\right)$	$\mathrm{Cin}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current ${ }^{\star *} \dagger$ (Dynamic plus Quiescent, Per Package) ($C_{L}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} \mathrm{~T}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(0.8 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD} \\ & \mathrm{I}_{\mathrm{T}}=(1.6 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD} \\ & \mathrm{I}_{\mathrm{T}}=(2.4 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$
Three-State Leakage Current	ITL	15	-	± 0.1	-	± 0.0001	± 0.1	-	± 3.0	$\mu \mathrm{Adc}$

\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
${ }^{* *}$ The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
\dagger To calculate total supply current at loads other than 50 pF :

$$
I_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+\left(C_{L}-50\right) \mathrm{Vfk}
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right.$) in volts, f in kHz is input frequency, and $\mathrm{k}=0.001$.

SWITCHING CHARACTERISTICS $\left(C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, See Figure 1)

Characteristic	Symbol	VDD	All Types		Unit
			Typ \#	Max	
```Output Rise and Fall Time tTLH, tTHL \(=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns}\) tTLH, t THL \(=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns}\) t \(\mathrm{TLH}, \mathrm{t}\) tHL \(=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{CL}_{\mathrm{L}}+9.5 \mathrm{~ns}\)```	$\begin{aligned} & \hline \text { tTLH, } \\ & \text { tTHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	ns
Propagation Delay Time (Figure 2) Inhibit, Control, or Data to Z	${ }_{\text {tPLH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 330 \\ 125 \\ 85 \end{gathered}$	$\begin{aligned} & 650 \\ & 250 \\ & 170 \end{aligned}$	ns
Propagation Delay Time (Figure 2) Inhibit, Control, or Data to Z	${ }_{\text {tPHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 330 \\ 125 \\ 85 \end{gathered}$	$\begin{aligned} & 650 \\ & 250 \\ & 170 \end{aligned}$	ns
3-State Output Delay Times (Figure 3) "1" or "0" to High Z, and High Z to "1" or "0"	$\begin{aligned} & \text { tpHZ, tPLZ, } \\ & \text { tPZH, tpZL } \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 60 \\ & 35 \\ & 30 \end{aligned}$	$\begin{gathered} \hline 150 \\ 100 \\ 75 \end{gathered}$	ns

* The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.


Figure 1. Power Dissipation Test Circuit and Waveform


Figure 2. AC Test Circuit and Waveforms


Figure 3. 3-State AC Test Circuit and Waveform


## 3-STATE MODE OF OPERATION

Output terminals of several MC14512B 8-Bit Data Selectors can be connected to a single date bus as shown. One MC14512B is selected by the 3 -state control, and the remaining devices are disabled into a high-impedance "off" state. The number of 8 -bit data selectors, N , that may be connected to a bus line is determined from the output drive current, IOD, 3-state or disable output leakage current, ITL,
and the load current, $\mathrm{I}_{\mathrm{L}}$, required to drive the bus line (including fanout to other device inputs), and can be calculated by:

$$
N=\frac{I_{O D}-I_{L}}{I_{T L}}+1
$$

N must be calculated for both high and low logic state of the bus line.

OUTLINE DIMENSIONS


## OUTLINE DIMENSIONS



Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and , wh are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

## How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

