MC14521B

24-Stage Frequency Divider

The MC14521B consists of a chain of 24 flip-flops with an input circuit that allows three modes of operation. The input will function as a crystal oscillator, an RC oscillator, or as an input buffer for an external oscillator. Each flip-flop divides the frequency of the previous flip-flop by two, consequently this part will count up to $2^{24}=16,777,216$. The count advances on the negative going edge of the clock. The outputs of the last seven-stages are available for added flexibility.

- All Stages are Resettable
- Reset Disables the RC Oscillator for Low Standby Power Drain
- RC and Crystal Oscillator Outputs Are Capable of Driving External Loads
- Test Mode to Reduce Test Time
- $V_{D D^{\prime}}$ and $\mathrm{V}_{\text {SS }}$ Pins Brought Out on Crystal Oscillator Inverter to Allow the Connection of External Resistors for Low-Power Operation
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load over the Rated Temperature Range.
MAXIMUM RATINGS* (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage (DC or Transient)	-0.5 to VDD +0.5	V
$\mathrm{I}_{\text {in }}, I_{\text {out }}$	Input or Output Current (DC or Transient), per Pin	± 10	mA
P_{D}	Power Dissipation, per Package \dagger	500	mW
$\mathrm{~T}_{\text {Stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. \dagger Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
Ceramic "L" Packages: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $100^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

Q24	$1 \bullet$	16	V_{DD}
RESET	2	15] Q23
$\mathrm{VSS}^{\prime} \mathrm{L}^{\text {l }}$	3	14	Q22
OUT 2 [4	13	Q21
$V_{D D}{ }^{\prime}$	5	12] Q20
IN 2	6	11	Q19
OUT 1 [7	10	Q Q18
VSS	8	9	IN 1

BLOCK DIAGRAM

Output	Count Capacity
Q18	$2^{18}=262,144$
Q19	$2^{19}=524,288$
Q20	$2^{20}=1,048,576$
Q21	$2^{21}=2,097,152$
Q22	$2^{22}=4,194,304$
Q23	$2^{23}=8,388,608$
Q24	$2^{24}=16,777,216$

REV 3
1/94
© Motorola, Inc. 1995

ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Characteristic	Symbol	VDD Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ \#	Max	Min	Max	
Output Voltage " 0 " Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	V_{OL}	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	5.0 10 15	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{array}{cc} \hline \text { Input Voltage } & \text { "0" Level } \\ \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) & \\ & \\ & \text { "1" Level } \\ \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{array}$	VIL	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ Pins $4 \& 7$ $\left(\mathrm{~V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ Pins 1,10, $\left(\mathrm{~V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $11,12,13,14$ $\left(\mathrm{~V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$ and 15 $\left(\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right)$ Sink $\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$	${ }^{\mathrm{I} O H}$	$\begin{gathered} 5.0 \\ 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} -1.2 \\ -0.25 \\ -0.62 \\ -1.8 \end{gathered}$	-	$\begin{aligned} & -1.0 \\ & -0.2 \\ & -0.5 \\ & -1.5 \end{aligned}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \end{gathered}$	-	$\begin{gathered} -0.7 \\ -0.14 \\ -0.35 \\ -1.1 \end{gathered}$	-	mAdc
		$\begin{gathered} 5.0 \\ 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} \hline-3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
	${ }^{\text {IOL }}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	lin	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{i n}=0\right)$	C_{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{gathered} 5.0 \\ 10 \\ 20 \end{gathered}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current** \dagger (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} T$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$			$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(\\ & \mathrm{I}_{\mathrm{T}}=(\\ & \mathrm{I}_{\mathrm{T}}=(\end{aligned}$	$\begin{aligned} & 42 \mu \mathrm{~A} / \mathrm{kHz}) \\ & 85 \mu \mathrm{~A} / \mathrm{kHz}) \\ & 40 \mu \mathrm{~A} / \mathrm{kHz}) \end{aligned}$	$\begin{aligned} & +I_{D D} \\ & +I_{D D} \\ & +I_{D D} \end{aligned}$			$\mu \mathrm{Adc}$

\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
** The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
\dagger To calculate total supply current at loads other than 50 pF :

$$
I_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+\left(C_{L}-50\right) \mathrm{Vfk}
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.003$.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {DD }}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$). Unused outputs must be left open.

SWITCHING CHARACTERISTICS* $\left(C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	$\begin{aligned} & \mathrm{VDD} \\ & \mathrm{Vdc} \end{aligned}$	Min	Typ \#	Max	Unit
Output Rise and Fall Time (Counter Outputs) tTLH, tTHL $=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{CL}_{\mathrm{L}}+25 \mathrm{~ns}$ ${ }^{\mathrm{t} T \mathrm{LH}}, \mathrm{t}$ THL $=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns}$ ${ }^{\text {tTLH }}, \mathrm{t}_{\text {THL }}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns}$	tTLH, tTHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	ns
Propagation Delay Time Clock to Q18 tpHL, tpLH $=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+4415 \mathrm{~ns}$ tphL, tpLH $=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{CL}_{\mathrm{L}}+1667 \mathrm{~ns}$ tPHL, tPLH $=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{CL}_{\mathrm{L}}+1275 \mathrm{~ns}$ Clock to Q24 tPHL, tPLH $=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+5915 \mathrm{~ns}$ tPHL, tPLH $=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{CL}_{\mathrm{L}}+2167 \mathrm{~ns}$ tPHL, tPLH $=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1675 \mathrm{~ns}$	tphL, tPLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \\ & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 4.5 \\ & 1.7 \\ & 1.3 \\ & \hline 6.0 \\ & \hline 2.2 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 3.5 \\ & 2.7 \\ & \hline \\ & 12 \\ & 4.5 \\ & 3.5 \end{aligned}$	$\mu \mathrm{s}$
```Propagation Delay Time Reset to \(Q_{n}\) tPHL \(=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{CL}_{\mathrm{L}}+1215 \mathrm{~ns}\) tPHL \(=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+467 \mathrm{~ns}\) \({ }^{\text {tPHL }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+350 \mathrm{~ns}\)```	tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1300 \\ & 500 \\ & 375 \end{aligned}$	$\begin{aligned} & 2600 \\ & 1000 \\ & 750 \end{aligned}$	ns
Clock Pulse Width	${ }^{\text {twh }}$ (cl)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 385 \\ & 150 \\ & 120 \end{aligned}$	$\begin{gathered} 140 \\ 55 \\ 40 \end{gathered}$	-	ns
Clock Pulse Frequency	${ }_{\mathrm{f}} \mathrm{l}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 9.0 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 5.0 \\ & 6.5 \end{aligned}$	MHz
Clock Rise and Fall Time	${ }^{\text {tTLH, }}$, THL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	$\begin{aligned} & \hline 15 \\ & 5.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{s}$
Reset Pulse Width	${ }^{\text {tw }} \mathrm{W}$ (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 1400 \\ 600 \\ 450 \end{gathered}$	$\begin{aligned} & 700 \\ & 300 \\ & 225 \end{aligned}$	二	ns
Reset Removal Time	trem	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 30 \\ 0 \\ -40 \end{gathered}$	$\begin{aligned} & \hline-200 \\ & -160 \\ & -110 \end{aligned}$	二	ns

* The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.


Figure 1. Power Dissipation Test Circuit and Waveform


Figure 2. Switching Time Test Circuit and Waveforms


* Optional for low power operation, $10 \mathrm{k} \Omega \leq \mathrm{R} \leq 70 \mathrm{k} \Omega$.

Figure 3. Crystal Oscillator Circuit

Characteristic	$500 \mathrm{kHz}$   Circuit	50 kHz   Circuit	Unit
Crystal Characteristics Resonant Frequency Equivalent Resistance, $\mathrm{R}_{\mathrm{S}}$	$\begin{array}{r} 500 \\ 1.0 \end{array}$	$\begin{aligned} & 50 \\ & 6.2 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{k} \Omega \end{gathered}$
	$\begin{aligned} & 47 \\ & 82 \\ & 20 \end{aligned}$	$\begin{gathered} 750 \\ 82 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Frequency Stability   Frequency Change as a Function   of $\mathrm{V}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$   VDD Change from 5.0 V to 10 V   VDD Change from 10 V to 15 V   Frequency Change as a Function of Temperature ( V DD $=10 \mathrm{~V}$ )   $\mathrm{T}_{\mathrm{A}}$ Change from $-55^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$ MC14521 only Complete Oscillator*   $\mathrm{T}_{\mathrm{A}}$ Change from $+25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ MC14521 only Complete Oscillator*	$\begin{aligned} & +6.0 \\ & +2.0 \\ & \\ & -4.0 \\ & +100 \\ & \\ & \\ & -2.0 \\ & -160 \end{aligned}$	$\begin{aligned} & +2.0 \\ & +2.0 \\ & \\ & -2.0 \\ & +120 \\ & \\ & \\ & -2.0 \\ & -560 \end{aligned}$	ppm ppm   ppm ppm   ppm ppm

*Complete oscillator includes crystal, capacitors, and resistors.
Figure 4. Typical Data for Crystal Oscillator Circuit


Figure 5. RC Oscillator Stability


Figure 7. RC Oscillator Circuit


Figure 6. RC Oscillator Frequency as a Function of RTC and C


Figure 8. Functional Test Circuit

FUNCTIONAL TEST SEQUENCE

A test function (see Figure 8) has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8-stage sections, and 255 counts are loaded in each of the 8 -stage sections in parallel. All flip-flops are now at a logic " 1 ". The counter is now returned to the normal 24-stages in series configuration. One more pulse is entered into Input 2 (In 2) which will cause the counter to ripple from an all " 1 " state to an all "0" state.

Inputs		Outputs				Comments
Reset	In 2	Out 2	$\mathrm{V}_{\text {SS }}{ }^{\prime}$	VDD'	Q18 thru Q24	Counter is in three 8-stage sections in parallel mode Counter is reset. In 2 and Out 2 are connected together
1	0	0	$\square^{\text {V }}$	Gnd	0	
1	1	1				First "0" to " 1 " transition on In 2, Out 2 node.
	0 1 - -	0 1 - -				255 " 0 " to " 1 " transitions are clocked into this $\ln 2$, Out 2 node.
	1	1			1	The 255th " 0 " to "1" transition.
	0	0			1	
	1	0	Gnd	$\underset{V_{D D}}{\nabla}$	1	Counter converted back to 24-stages in series mode.
	1	0			1	Out 2 converts back to an output.
	0	1		$\nabla$	0	Counter ripples from an all " 1 " state to an all " 0 " stage.

LOGIC DIAGRAM


OUTLINE DIMENSIONS


## OUTLINE DIMENSIONS



Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and , wh are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

## How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

