Dual 4-Channel Analog Data Selector

The MC14529B analog data selector is a dual 4-channel or single 8 -channel device depending on the input coding. The device is suitable for digital as well as analog application, including various one-of-four and one-of-eight data selector functions. Since the device has bidirectional analog characteristics it can also be used as a dual binary to 1 -of-4 or a binary to 1 -of- 8 decoder.

- Data Paths Are Bidirectional
- 3-State Outputs
- Linear "On" Resistance
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load over the Rated Temperature Range.
MAXIMUM RATINGS* (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, I_{\text {out }}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
P_{D}	Power Dissipation, per Package \dagger	500	mW
$\mathrm{~T}_{\text {Stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. \dagger Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
Ceramic "L" Packages: - $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $100^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
TRUTH TABLE ($\mathrm{X}=$ Don't Care)

STX	STY	B	A	Z	W	Dual 4-Channel Mode 2 Outputs
1	1	0	0	X0	Y0	
1	1	0	1	X1	Y1	
1	1	1	0	X2	Y2	
1	1	1	1	X3	Y3	
1	0	0	0	X0		Single 8-Channel Mode 1 Output (Z and W tied together)
1	0	0	1	X1		
1	0	1	0	X2		
1	0	1	1	X3		
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
0	0	X	X	$\begin{array}{r} \mathrm{H} \\ \text { Impe } \end{array}$	ance	

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$). Unused outputs must be left open.

MC14529B

REV 3
1/94
MOTOROLA

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	VDD	Test Conditions	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
				Min	Max	Min	Typ \#	Max	Min	Max	

SUPPLY REQUIREMENTS (Voltages Referenced to V_{EE})

Power Supply Voltage Range	$V_{\text {DD }}$	-	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-3.0 \geq \mathrm{V}_{\mathrm{SS}} \geq \\ & \mathrm{V}_{\mathrm{EE}} \end{aligned}$	3.0	18	3.0	-	18	3.0	18	V
Quiescent Current Per Package	IDD	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & \text { Control Inputs: } \mathrm{V}_{\text {in }}= \\ & \mathrm{V}_{\text {SS }} \text { or } \mathrm{V}_{\text {DD }}, \\ & \text { Switch }^{\mathrm{I} / \mathrm{O}: \mathrm{V}_{\text {SS }} \leq} \\ & \mathrm{V}_{\mathrm{I} / \mathrm{O}} \leq \mathrm{V}_{\mathrm{DD}} \text {, and } \\ & \Delta \mathrm{V}_{\text {Switch }} \leq 500 \mathrm{mV}^{\star *} \end{aligned}$	—	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 2.0 \end{aligned}$	-	$\begin{gathered} 60 \\ 60 \\ 120 \end{gathered}$	$\mu \mathrm{A}$
Total Supply Current (Dynamic Plus Quiescent, Per Package	${ }^{\mathrm{I}} \mathrm{D}(\mathrm{AV})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ only (The channel component, $\left(V_{\text {in }}-V_{\text {out }}\right) / R_{\text {on }}$, is not included.)	 Typical $(0.07 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD}$ $(0.20 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD}$ $(0.36 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD}$			$\begin{aligned} & (0.07 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD} \\ & (0.20 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD} \\ & (0.36 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD} \end{aligned}$				$\mu \mathrm{A}$

CONTROL INPUTS - INHIBIT, A, B (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Low-Level Input Voltage	$\mathrm{V}_{\text {IL }}$	5.0 10 15	$\mathrm{R}_{\text {on }}=$ per spec, $\mathrm{l}_{\text {off }}=$ per spec	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	V
High-Level Input Voltage	$\mathrm{V}_{\text {IH }}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\mathrm{R}_{\text {on }}=$ per spec, $\mathrm{l}_{\text {off }}=$ per spec	$\begin{aligned} & \hline 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	V
Input Leakage Current	lin	15	$\mathrm{V}_{\text {in }}=0$ or $\mathrm{V}_{\text {DD }}$	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{C}_{\text {in }}$	-		-	-	-	5.0	7.5	-	-	pF

SWITCHES IN/OUT AND COMMONS OUT/IN - W, Z (Voltages Referenced to $\mathrm{V}_{\text {EE }}$

Recommended Peak-toPeak Voltage Into or Out of the Switch	$\mathrm{V}_{1 / \mathrm{O}}$	-	Channel On or Off	0	$V_{\text {DD }}$	0	-	V_{DD}	0	$V_{\text {DD }}$	V_{p-p}
Recommended Static or Dynamic Voltage Across the Switch** (Figure 5)	$\Delta \mathrm{V}_{\text {switch }}$	-	Channel On	0	600	0	-	600	0	300	mV
Output Offset Voltage	V_{OO}	-	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$, No Load	-	-	-	10	-	-	-	$\mu \mathrm{V}$
ON Resistance	$\mathrm{R}_{\text {on }}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \Delta \mathrm{V}_{\text {switch }} \leq 500 \mathrm{mV}^{\star \star}, \\ & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \text { (Control), and } \mathrm{V}_{\text {in }}= \\ & 0 \text { to } \mathrm{V}_{\mathrm{DD}} \text { (Switch) } \end{aligned}$	-	$\begin{aligned} & 400 \\ & 240 \end{aligned}$	—	$\begin{gathered} 120 \\ 80 \end{gathered}$	$\begin{aligned} & 480 \\ & 270 \end{aligned}$	—	$\begin{aligned} & 560 \\ & 350 \end{aligned}$	Ω
Δ ON Resistance Between Any Two Channels in the Same Package	$\Delta \mathrm{R}_{\text {On }}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$		—	-	—	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	-	—	-	Ω
Off-Channel Leakage Current (Figure 10)	1 off	15	$\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} (Control) Channel to Channel or Any One Channel		± 100	-	± 0.05	± 100	-	± 1000	nA
Capacitance, Switch I/O	$\mathrm{Cl}_{1 / \mathrm{O}}$	-	Inhibit = V ${ }_{\text {DD }}$	-	-	-	8.0	-	-	-	pF
Capacitance, Common O/I	$\mathrm{C}_{\mathrm{O} / \mathrm{l}}$	-	Inhibit $=\mathrm{V}_{\text {DD }}$	-	-	-	20	-	-	-	pF
Capacitance, Feedthrough (Channel Off)	$\mathrm{Cl}_{\mathrm{l} / \mathrm{O}}$	-	Pins Not Adjacent Pins Adjacent	-	-	-	$\begin{aligned} & 0.15 \\ & 0.47 \end{aligned}$	-	-	-	pF

\#Data labelled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.
** For voltage drops across the switch $\left(\Delta V_{\text {Switch }}\right)>600 \mathrm{mV}$ ($>300 \mathrm{mV}$ at high temperature), excessive $\mathrm{V}_{\text {DD }}$ current may be drawn; i.e. the current out of the switch may contain both $V_{D D}$ and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

SWTCHING CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Figure	Symbol	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {DD }}$	Min	Typ \#	Max	Unit
$\mathrm{V}_{\text {in }}$ to $\mathrm{V}_{\text {out }}$ Propagation Delay Time $\left(C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$	7	tpLH, tPHL	0.0	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 20 \\ & 10 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	ns
Propagation Delay Time, Control to Output, $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS} $\left(C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right.$)	8	$\begin{aligned} & \text { tPLZ, tpZL, } \\ & \text { tPHZ, tpZH } \end{aligned}$	0.0	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$-$	$\begin{aligned} & 140 \\ & 70 \\ & 50 \end{aligned}$	$\begin{aligned} & 400 \\ & 160 \\ & 120 \end{aligned}$	ns
$\begin{aligned} & \hline \text { Crosstalk, Control to Output } \\ & \left(C_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right. \\ & \left.\mathrm{R}_{\text {out }}=10 \mathrm{k} \Omega\right) \end{aligned}$	9	-	0.0	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		mV
Control Input Pulse Frequency $\left(C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$	10	$\mathrm{f}_{\text {in }}$	0.0	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 6.2 \\ & 8.3 \end{aligned}$	MHz
Noise Voltage $(\mathrm{f}=100 \mathrm{~Hz})$	11, 12	-	0.0	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \\ & \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 24 \\ & 25 \\ & 30 \\ & 12 \\ & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\frac{\mathrm{nV} /}{\sqrt{\text { cycle }}}$
Sine Wave Distortion $\left(\mathrm{V}_{\text {in }}=1.77 \mathrm{Vdc} \mathrm{RMS}\right.$ Centered @ 0.0 Vdc, $R_{L}=10 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz}$)	-	-	-5.0	5.0	-	0.36	-	\%
Off-Channel Leakage Current $\left(V_{\text {in }}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\text {out }}=-5.0 \mathrm{Vdc}\right)$ $\left(V_{\text {in }}=-5.0 \mathrm{Vdc}, \mathrm{V}_{\text {out }}=+5.0 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\text {in }}=+7.5 \mathrm{Vdc}, \mathrm{V}_{\text {out }}=-7.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\text {in }}=-7.5 \mathrm{Vdc}, \mathrm{V}_{\text {out }}=+7.5 \mathrm{Vdc}\right)$	-	1 off	$\begin{aligned} & -5.0 \\ & -5.0 \\ & -7.5 \\ & -7.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 7.5 \\ & 7.5 \end{aligned}$	-	$\begin{aligned} & \pm 0.001 \\ & \pm 0.001 \\ & \pm 0.0015 \\ & \pm 0.0015 \end{aligned}$	$\begin{aligned} & \pm 125 \\ & \pm 125 \\ & \pm 250 \\ & \pm 250 \end{aligned}$	nA
```Insertion Loss ( \(\mathrm{V}_{\mathrm{in}}=1.77 \mathrm{Vdc}\) RMS centered @ 0.0 Vdc, \(\mathrm{f}=1.0 \mathrm{MHz}\) ) \(l_{\text {loss }}=20 \log _{10}\left(V_{\text {out }} / V_{\text {in }}\right)\) \(\left(R_{L}=1.0 \mathrm{k} \Omega\right)\) ( \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) ) \(\left(R_{L}=100 \mathrm{k} \Omega\right)\) \(\left(R_{L}=1.0 \mathrm{M} \Omega\right)\)```	13	-	- 5.0	5.0	-	$\begin{gathered} 2.0 \\ 0.8 \\ 0.25 \\ 0.01 \end{gathered}$	-	dB
	-	BW	-5.0	5.0	-	$\begin{aligned} & 35 \\ & 28 \\ & 27 \\ & 26 \end{aligned}$	-	MHz
$\begin{array}{\|r} \hline \text { Feedthrough and Crosstalk } \\ 20 \text { Log } 10\left(V_{\text {out }} / V_{\text {in }}\right)=-50 \mathrm{~dB} \\ \\ \\ \\ \left(R_{L}=1.0 \mathrm{k} \Omega\right) \\ \left(R_{L}=10 \mathrm{k} \Omega\right) \\ \\ \\ \left(R_{L}=100 \mathrm{k} \Omega\right) \\ \left(R_{L}=1.0 \mathrm{M} \Omega\right) \end{array}$	-	-	-5.0	5.0	$-$	$\begin{gathered} 850 \\ 100 \\ 12 \\ 1.5 \end{gathered}$	-	MHz

\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.


Pins 2, 3, 4, 12, 13 and 14 are left open.
$\mathrm{V}_{\text {IL }}: \mathrm{V}_{\mathrm{C}}$ is raised from $\mathrm{V}_{\mathrm{SS}}$ until $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\text {IL }}$. at $V_{C}=V_{\text {IL }}: I_{S}= \pm 10 \mu \mathrm{~A}$ with $V_{\text {in }}=V_{S S}, V_{\text {out }}=V_{D D}$ $V_{\text {in }}=V_{D D}, V_{\text {out }}=V_{S S}$.
$\mathrm{V}_{\mathrm{IH}}$ : When $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}}$ to $\mathrm{V}_{\mathrm{DD}}$, the switch is ON and the $\mathrm{R}_{\mathrm{ON}}$ specifications are met.

Figure 2. Noise Immunity Test Circuit


Figure 4. RON Characteristics Test Circuit

TYPICAL RON versus INPUT VOLTAGE


Figure 5.


Figure 6.



Figure 7. Propagation Delay Test Circuit and Waveforms


Figure 9. Crosstalk Test Circuit


Figure 8. Turn-On Delay Time Test Circuit and Waveforms


Figure 10. Frequency Response Test Circuit


Figure 12. Typical Noise Characteristics


PIN ASSIGNMENT

STX	$1 \bullet$	16
X0	2	15
X1	3	14
X2	4	13
X3	5	12
A	6	11
B	7	10
VSS	8	9

Figure 13. Typical Insertion Loss/Bandwidth Characteristics

LOGIC DIAGRAM


$$
\begin{aligned}
& \text { VDD }=\mathrm{PIN} 16 \\
& \text { VSS }=\text { PIN } 8
\end{aligned}
$$

OUTLINE DIMENSIONS


## OUTLINE DIMENSIONS



Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and , wh are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

## How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

