DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP

The MC74F112 contains two independent, high-speed JK flip-flops with Direct Set and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on \bar{S}_{D} or $\overline{\mathrm{C}}_{D}$ prevents clocking and forces Q or \bar{Q} HIGH, respectively. Simultaneous LOW signals on \bar{S}_{D} and \bar{C}_{D} force both Q and \bar{Q} HIGH.

CONNECTION DIAGRAM

FUNCTION TABLE (Each Half)

Inputs	Output
@ t_{n}	@ $\mathrm{t}_{\mathrm{n}}+1$
$\mathrm{~J} \quad \mathrm{~K}$	Q
$\mathrm{L} \quad \mathrm{L}$	Q_{n}
$\mathrm{L} \quad \mathrm{H}$	L
$\mathrm{H} \quad \mathrm{L}$	H
$\mathrm{H} \quad \mathrm{H}$	Q_{n}

Asynchronous Inputs:
LOW Input to \bar{S}_{D} sets Q to HIGH level
LOW Input to $\overline{\mathrm{C}}_{\mathrm{D}}$ sets Q to LOW level
Clear and Set are independent of clock
Simultaneous LOW on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both Q and \bar{Q} HIGH

H = HIGH Voltage Level

L = LOW Voltage Level
$t_{n}=$ Bit time before clock pulse
$t_{n}+1=$ Bit time after clock pulse

MC74F112

DUAL JK NEGATIVE

 EDGE-TRIGGERED FLIP-FLOPFAST ${ }^{\text {m }}$ SCHOTTKY TTL

MC74F112

LOGIC DIAGRAM (one half shown)

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	74	4.5	5.0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	74	0	25	70	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High	74			-1.0	mA
I_{OL}	Output Current - Low	74			20	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage	
V_{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage	
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-1.2	V	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
V_{OH}	Output HIGH Voltage	2.5	3.4		V	$\mathrm{IOH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$
		2.7	3.4		V	$\mathrm{I} \mathrm{OH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output LOW Voltage		0.35	0.5	V	$\mathrm{IOL}=20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
IIH	Input HIGH Current			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}$	
IIL	```Input LOW Current (J and K Inputs) (CP Inputs) (}\mp@subsup{\overline{C}}{D}{}\mathrm{ and }\mp@subsup{\overline{S}}{D}{}\mathrm{ Inputs)```			-0.6	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	
				-2.4	mA		
				-3.0	mA		
los	Output Short Circuit Current (Note 2)	-60		-150	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	
ICC	Power Supply Current		12	19	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{CP}}=0 \mathrm{~V}$	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS

Symbol	Parameter	74F		74F		Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{PF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{PF} \end{gathered}$		
		Min	Max	Min	Max	
$f_{\text {max }}$	Maximum Clock Frequency	110				MHz
tPLH	Propagation Delay					ns
tPHL	$\overline{C P}_{n}$ to Q_{n} or $\overline{\mathrm{Q}}_{n}$	2.0	6.5	2.0	7.5	
tPLH	Propagation Delay	2.0	6.5	2.0	7.5	
tPHL	$\overline{\mathrm{C}}_{\text {Dn }}$ or $\bar{S}_{\text {Dn }}$ to Q_{n} or $\overline{\mathrm{Q}}_{n}$	2.0	6.5	2.0	7.5	ns

AC OPERATING REQUIREMENTS

Symbol	Parameter		74F				Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$			$\begin{aligned} & \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C C}=5.0 \mathrm{~V} \pm 10 \% \end{aligned}$		
		Min	Typ	Max	Min	Max	
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	4.0			4.0		ns
$t_{s}(\mathrm{~L})$	J_{n} or K_{n} to $\overline{\mathrm{CP}}_{\mathrm{n}}$	3.0			3.0		
th (H)	Hold Time, HIGH or LOW J_{n} or K_{n} to $\overline{C P}_{n}$	0			0		
th (L)		0			0		
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	$\overline{\mathrm{CP}}_{\mathrm{n}}$ Pulse Width, HIGH or LOW						ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$		4.5			4.5		
t_{w} (L)	$\overline{\mathrm{C}}_{\text {Dn }}$ or $\bar{S}_{\text {Dn }}$ Pulse Width, LOW	4.5			4.5		ns
trec	Recovery Time $\overline{\mathrm{C}}_{\text {Dn }}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to CP	4.0			5.0		ns

