4-STAGE SYNCHRONOUS BIDIRECTIONAL COUNTERS

The MC54/74F168 and MC54/74F169 are fully synchronous 4-stage up/ down counters. The F168 is a BCD decade counter; the F169 is a modulo-16 binary counter. Both feature a preset capability for programmable operation, carry lookahead for easy cascading, and a U/D input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the clock.

- Asynchronous Counting and Loading
- Built-In Lookahead Carry Capability
- Presettable for Programmable Operation

CONNECTION DIAGRAM (TOP VIEW)

MODE SELECT TABLE

$\overline{\text { PE }}$	CEP	CET	U/D	Action on Rising Clock Edge
L	X	X	X	Load (Pn Qn)
H	L	L	H	Count Up (Increment)
H	L	L	L	Count Down (Decrement)
H	H	X	X	No Change (Hold)
H	X	H	X	No Change (Hold)

H = HIGH Voltage Level; L = LOW Voltage Level; X = Don't Care
STATE DIAGRAMS

MC54/74F168 MC54/74F169

4-STAGE SYNCHRONOUS BIDIRECTIONAL COUNTERS

FAST ${ }^{\text {TM }}$ SCHOTTKY TTL

MC54/74F168•MC54/74F169

LOGIC DIAGRAMS

MC54/74F169

NOTE:
These diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

MC54/74F168•MC54/74F169

FUNCTIONAL DESCRIPTION

The F168 and F169 use edge-triggered J-K type flip-flops and have no constraints on changing the control or data input signals in either state of the clock. The only requirement is that the various inputs attain the desired state at least a setup time before the rising edge of the clock and remain valid for the recommended hold time thereafter. The parallel load operation takes precedence over other operations, as indicated in the Mode Select Table. When PE is LOW, the data on the $\mathrm{P}_{0}-\mathrm{P}_{3}$ inputs enters the flip-flops on the next rising edge of the clock. In order for counting to occur, both $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ must be LOW and $\overline{\text { PE }}$ must be HIGH; the U/D input then determines the direction of counting. The Terminal Count ($\overline{\mathrm{TC}})$ output is normally HIGH and goes LOW, provided that CET is LOW, when a counter reaches zero in the Count Down mode or reaches 9 (15 for the F169) in the Count Up mode. The TC
output state is not a function of the Count Enable Parallel (CEP) input level. The TC output of the F168 decade counter can also be LOW in the illegal states 11,13 , and 15 , which can occur when power is turned on or via parallel loading. If an illegal state occurs, the F168 will return to the legitimate sequence within two counts. Since the TC signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on $\overline{T C}$. For this reason the use of $\overline{\mathrm{TC}}$ as a clock signal is not recommended (see logic equations below).

1) Count Enable $=\overline{C E P} \bullet \overline{C E T} \bullet P E$
2) Up: ('F168): $\overline{T C}=\mathrm{Q}_{0} \bullet \bar{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3} \bullet(\mathrm{Up}) \cdot \overline{\mathrm{CET}}$
('F169): $\overline{T C}=Q_{0} \bullet Q_{1} \bullet Q_{2} \bullet Q_{3} \bullet(U p) \bullet \overline{C E T}$
3) Down: $\overline{T C}=\bar{Q}_{0} \bullet \bar{Q}_{1} \bullet \bar{Q}_{2} \bullet \bar{Q}_{3} \bullet($ Down $) \bullet \overline{C E T}$

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54, 74	4.5	5.0	5.5	V
T_{A}	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54, 74			-1.0	mA
${ }^{\text {IOL }}$	Output Current - Low	54, 74			20	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

[^0]MC54/74F168•MC54/74F169

AC CHARACTERISTICS

Symbol	Parameter		54/74F		54F		74F		Unit
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Min	Max	Min	Max	Min	Max	
$f_{\text {max }}$	Maximum Clock Fr		100		60		85		MHz
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to Q_{n} ($\overline{\mathrm{PE}} \mathrm{HIGH}$		$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 14 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 13 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to TC	(F168)	$\begin{aligned} & \hline 5.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 15.5 \\ 11 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 18 \\ 13.5 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 17 \\ 12.5 \end{gathered}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay CP to TC	(F169)	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 15.5 \\ 11 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 18 \\ 13.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 17 \\ 12.5 \end{gathered}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$		$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	ns
tpLH tPHL	Propagation Delay U/D to TC	(F168)	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11 \\ & 16 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 17.5 \end{aligned}$	ns
tPLH tPHL	Propagation Delay $\mathrm{U} / \overline{\mathrm{D}}$ to $\overline{\mathrm{TC}}$	(F169)	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 11 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 13 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 12 \end{gathered}$	ns

AC OPERATING REQUIREMENTS

Symbol	Parameter	$\begin{aligned} & 54 / 74 \mathrm{~F} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{CC}=+5.0 \mathrm{~V} \end{aligned}$		54F		74F		Unit
				$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{C}}=5.0 \mathrm{~V} \pm 10 \% \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \end{aligned}$	Setup Time, HIGH or LOW P_{n} to $C P$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW P_{n} to CP	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		7.0		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	0		0		0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \end{aligned}$	Setup Time, HIGH or LOW $\overline{\text { PE to CP }}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW $\overline{\text { PE to } C P ~}$	0		0		0		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \end{aligned}$	Setup Time, HIGH or LOW (F168) U/D to CP	$\begin{gathered} 11 \\ 16.5 \end{gathered}$		$\begin{gathered} 13.5 \\ 19 \end{gathered}$		$\begin{gathered} 12.5 \\ 18 \end{gathered}$		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW (F169) U/D to CP	$\begin{aligned} & 11 \\ & 7.0 \end{aligned}$		$\begin{gathered} 13.5 \\ 9.0 \end{gathered}$		$\begin{gathered} 12.5 \\ 8.0 \end{gathered}$		ns
$\begin{aligned} & \mathrm{th}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, HIGH or LOW U/D to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		0		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		ns

[^0]: NOTES:

 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 2. Not more than one output should be shorted at a time, nor for more than 1 second.
