For:char Printed on:Mon, Feb 6, 1995 09:48:26 From book:DL121CH4 (5) VIEW Document:MC74F323 (5) VIEW Last saved on:Fri, Feb 3, 1995 16:04:13 # 8-INPUT SHIFT/STORAGE REGISTER WITH SYNCHRONOUS RESET AND COMMON I/O PINS The MC74F323 is an 8-Bit Universal Shift/Storage Register with 3-state outputs. Its function is similar to the F299 with the exception of Synchronous Reset. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Separate outputs are provided for flip-flops Q_0 and Q_7 to allow easy cascading. A separate active LOW Master Reset is used to reset the register. Four modes of operation are possible: hold (store), shift left, shift right and parallel load. All modes are activated on the LOW-to-HIGH transition of the clock. - Common I/O For Reduced Pin Count - Four Operation Modes: Shift Left, Shift Right, Parallel Load and Store - Separate Continuous Inputs and Outputs from Q₀ and Q₇ Allow Easy Cascading - Fully Synchronous Reset - 3-State Outputs for Bus Oriented Applications - Input Clamp Diodes Limit High-Speed Termination Effects #### **CONNECTION DIAGRAM** # MC74F323 ### 8-INPUT SHIFT/STORAGE REGISTER WITH SYNCHRONOUS RESET AND COMMON I/O PINS **FAST**TM **SCHOTTKY TTL** #### **GUARANTEED OPERATING RANGES** | Symbol | Parameter | | Min | Тур | Max | Unit | |-----------------|-------------------------------------|----|-----|-----|-----------|------| | VCC | Supply Voltage | 74 | 4.5 | 5.0 | 5.5 | V | | TA | Operating Ambient Temperature Range | 74 | 0 | 25 | 70 | °C | | ЮН | Output Current — High | 74 | | | -1.0/-3.0 | mA | | l _{OL} | Output Current — Low | 74 | | | 20/24 | mA | ## MC74F323 #### **FUNCTION TABLE** | Inputs | | | | | |--------|----------------|----------------|----------|--| | SR | s ₁ | s ₀ | СР | Response | | L | Х | Х | ↑ | Synchronous Reset: Q ₀ –Q ₇ = LOW | | Н | Н | Н | ↑ | Parallel Load: I/O _n Q _n | | Н | L | Н | ↑ | Shift Right: DS ₀ Q ₀ , Q ₀ Q ₁ , etc. | | Н | Н | L | ↑ | Shift Left: DS ₇ Q ₇ , Q ₇ Q ₆ , etc. | | Н | L | L | Х | Hold | H = HIGH Voltage Level #### **FUNCTIONAL DESCRIPTION** The MC74F323 contains eight edge-triggered D-type flips-flops and the interstage logic necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operation is determined by S_0 and S_1 , as shown in the Function Table. All flip-flop outputs are brought out through 3-state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_0 and Q_7 are also brought out on other pins for expansion in serial shifting of longer words. A LOW signal on \overline{SR} overrides the Select inputs and allows the flip-flops to be reset by the next rising edge of CP. All other state changes are initiated by the LOW-to-HIGH CP transition. Inputs can change when the clock is in either state provided only that the recommended set-up and hold times, relative to the rising edge of CP, are observed. A HIGH signal on either \overline{OE}_1 or \overline{OE}_2 disables the 3-state buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-state buffers are also disabled by HIGH signals on both S_0 and S_1 in preparation for a parallel load operation. #### DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless otherwise specified) | | | | Limits | | | | | | | | |----------|--|--------------------------------|---------------------------------|-----|-----|------|--|--|--------------------------|--| | Symbol | Parameter | | | Min | Тур | Max | Unit | Test | Conditions | | | V_{IH} | Input HIGH Voltage | | | 2.0 | | | V | Guaranteed Input | HIGH Voltage | | | V_{IL} | Input LOW Voltage | | | | | 0.8 | V | Guaranteed Input LOW Voltage | | | | VIK | Input Clamp Diode Voltage | | | | | -1.2 | V | $V_{CC} = MIN$, $I_{IN} = -18 \text{ mA}$ | | | | | | Q ₀ /Q ₇ | 74 | 2.5 | | | V | January 10 mA | V _{CC} = 4.5 V | | | Vон | Output HIGH Voltage | | 74 | 2.7 | | | V $I_{OH} = -1.0 \text{ mA}$ | V _{CC} = 4.75 V | | | | VОН | Output Filori Voltage | 1/0 | 74 | 2.7 | 3.4 | | V | V $I_{OH} = -3.0 \text{ mA}$ | V _{CC} = 4.75 V | | | | | 1/0 | 74 | 2.4 | | | V | | V _{CC} = 4.5 V | | | VOL | Output LOW Voltage | | Q ₀ /Q ₇ | | | 0.5 | V | I _{OL} = 20 mA | V _{CC} = MIN | | | VOL | Output LOVV Voltage | Output LOW Voltage | | | | 0.5 | | I _{OL} = 24 mA | VCC = WIII 4 | | | | Input HIGH Current | | | | 20 | μΑ | V _{CC} = MAX, V _{IN} = 2.7 V | | | | | ΊΗ | | | I/O | | | 70 | μιτ | VCC = V(, V V = 2 V | | | | '111 | | | Q ₀ /Q ₇ | | | 0.1 | mA | V _{CC} = MAX | V _{IN} = 7.0 V | | | | | | I/O | | | 1.0 | | VCC = 1111 UK | V _{IN} = 5.5 V | | | Iμ | Input LOW Current | | s ₀ , s ₁ | | | -1.2 | mA | V _{CC} = MAX, V _{IN} = 0.5 V | | | | 'IL | | | Other Inputs | | | -0.6 | | 100 2.4, 1114 3.0 V | | | | lozh | Off-State Output Current, | | | | | 70 | μΑ V _{CC} = MAX | V _{OUT} = 2.7 V | | | | 'UZH | High-Level Voltage Applied | | | | | 1.0 | mA | VCC = 1417 UK | V _{OUT} = 5.5 V | | | lozL | Off-State Output Current,
Low-Level Voltage Applied | | | | | -0.6 | mA | $V_{CC} = MAX, V_{OUT} = 0.5 V$ | | | | los | Output Short Circuit Current (Note 2) | | | -60 | | -150 | mA | V00 - MAY | V _{OUT} = 0 V | | | ICC | Total Supply Current | | | | | 95 | mA | VCC = MAX | Outputs Disabled | | #### NOTES: L = LOW Voltage Level X = Don't Care $[\]uparrow$ = LOW-to-HIGH clock transition. ^{1.} For conditions shown as MIN or MAX, use appropriate value specified under recommended operating conditions for the applicable device type. ^{2.} Not more than one output should be shorted at a time, nor for more than 1 second. # MC74F323 #### **AC ELECTRICAL CHARACTERISTICS** | | | 74F | | 74F | | | |--------------------------------------|---|--|------------|---|------------|------| | | | T _A = +25°C
V _{CC} = +5.0 V
C _L = 50 pF | | $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$
$V_{CC} = +5.0 \text{ V } \pm 10\%$
$C_L = 50 \text{ pF}$ | | | | Symbol | Parameter | Min | Max | Min | Max | Unit | | fMAX | Maximum Input Frequency | 70 | | 70 | | MHz | | ^t PLH
^t PHL | Propagation Delay CP to Q_0 or Q_7 | 3.5
3.5 | 9.0
8.5 | 3.5
3.5 | 10
9.5 | ns | | tPLH
tPHL | Propagation Delay
CP to I/O _n | 3.5
5.0 | 9.0
11 | 3.5
5.0 | 10
12 | ns | | ^t PZH
^t PZL | Output Enable Time to
HIGH or LOW Level | 3.5
4.0 | 8.0
10 | 3.5
4.0 | 9.0
11 | ns | | tPHZ
tPLZ | Output Disable Time to
HIGH or LOW Level | 2.0
2.0 | 6.0
5.5 | 2.0
2.0 | 7.0
6.5 | ns | ## **AC SETUP REQUIREMENTS** | | | 74F | | | 74F | | | |--|---|--|-----|-----|---|-----|------| | | | T _A = +25°C
V _{CC} = +5.0 V
C _L = 50 pF | | | $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$
$V_{CC} = +5.0 \text{ V } \pm 10\%$
$C_L = 50 \text{ pF}$ | | | | Symbol | Parameter | Min | Тур | Max | Min | Max | Unit | | t _{s(H)} | Set-Up Time, HIGH or LOW
S ₀ or S ₁ to CP | 8.5
8.5 | | | 8.5
8.5 | | ns | | th(H) | Hold Time, HIGH or LOW
S ₀ or S ₁ to CP | 0.0
0.0 | | | 0.0
0.0 | | ns | | ts(H) | Set-Up Time, HIGH or LOW I/O _n , DS ₀ , DS ₇ to CP | 5.0
5.0 | | | 5.0
5.0 | | ns | | th(H)
th(L) | Hold Time, HIGH or LOW I/O _n , DS ₀ , DS ₇ to CP | 2.0
2.0 | | | 2.0
2.0 | | ns | | ^t s(H)
^t s(L) | Set-Up Time, HIGH or LOW SR to CP | 10
10 | | | 10
10 | | ns | | ^t h(H)
^t h(L) | Hold Time, HIGH or LOW SR to CP | 0.0
0.0 | | | 0.0
0.0 | | ns | | t _{w(H)} | CP Pulse Width, HIGH or LOW | 7.0
7.0 | | | 7.0
7.0 | | ns |