DUAL 4-INPUT MULTIPLEXER

The MC54/74F352 is a very high speed dual 4-input multiplexer with common Select inputs and individual Enable inputs for each section. It can select two bits of data from four sources. The two buffered outputs present data in the inverted (complementary) form. The F352 is the functional equivalent of the F153 except with inverted outputs.

- Inverted Version of the F153
- Separate Enables for Each Multiplexer
- Input Clamp Diode Limits High-Speed Termination Effects

CONNECTION DIAGRAM (TOP VIEW)

LOGIC DIAGRAM

DUAL 4-INPUT MULTIPLEXER

FAST $^{\text {TM }}$ SCHOTTKY TTL

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54, 74	4.5	5.0	5.5	V
T_{A}	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
I^{OH}	Output Current - High	54, 74			-1.0	mA
IOL	Output Current - Low	54, 74			20	mA

FUNCTIONAL DESCRIPTION

The F352 is a dual 4-input multiplexer. It selects two bits of data from up to four sources under the control of the common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4 -input multiplexer circuits have individual active-LOW Enables $\left(\bar{E}_{a}, \bar{E}_{b}\right)$ which can be used to strobe the outputs independently. When the Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) are HIGH, the corresponding outputs ($\overline{\mathrm{Z}}_{\mathrm{a}}, \overline{\mathrm{Z}}_{\mathrm{b}}$) are forced HIGH.

The logic equations for the outputs are shown below:

$$
\begin{aligned}
& \overline{\mathrm{Z}}_{\mathrm{a}}=\overline{\mathrm{E}_{\mathrm{a}} \cdot\left(\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{2 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)} \\
& \overline{\mathrm{Z}}_{\mathrm{b}}=\overline{\mathrm{E}_{\mathrm{b}} \cdot\left(\mathrm{I}_{0 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\mathrm{I}_{2 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)}
\end{aligned}
$$

FUNCTION TABLE

Select Inputs		Inputs (a or b)					Output
S_{0}	S_{1}	$\overline{\mathrm{E}}$	I_{0}	I_{1}	I_{2}	I_{3}	$\overline{\mathbf{z}}$
X	X	H	X	X	X	X	H
L	L	L	L	x	x	X	H
L	L	L	H	X	X	X	L
H	L	L	X	L	x	x	H
H	L	L	x	H	x	x	L
L	H	L	X	X	L	x	H
L	H	L	X	X	H	X	L
H	H	L	X	x	X	L	H
H	H	L	x	x	x	H	L

[^0]
MC54/74F352

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			V	Guaranteed Inpu	GH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V	Guaranteed Inpu	Voltage
V_{IK}	Input Clamp Diode Voltage			-1.2	V	$\mathrm{IIN}=-18 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
V_{OH}	Output HIGH Voltage	2.5	3.4		V	$\mathrm{IOH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$
		2.7	3.4		V	${ }^{\mathrm{OH}}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		0.35	0.5	$\mu \mathrm{A}$	$\mathrm{IOL}=20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
IIH	Input HIGH Current			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	$\mathrm{V}_{C C}=$ MAX
				100		$\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}$	
IIL	Input LOW Current			-0.6	mA	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$
los	Output Short Circuit Current (Note 2)	-60		-150	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	$V_{C C}=$ MAX
ICCH	Power Supply Current		9.3	14	mA	$\mathrm{V}_{\text {IN }}=$ GND	$V_{C C}=\mathrm{MAX}$
ICCL			13.3	20		$\mathrm{V}_{\text {IN }}=\mathrm{HIGH}$	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS

Symbol	Parameter	54/74F			54 F		74F		Unit
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $s_{n} \text { to } \bar{z}_{n}$	$\begin{aligned} & \hline 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.0 \end{aligned}$	$\begin{gathered} 11 \\ 8.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 14 \\ & 11 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $\bar{E}_{n} \text { to } \bar{z}_{n}$	2.5 3.0	5.0 5.0		2.0 2.5	10 9.0	2.0 2.5		ns
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $I_{n} \text { to } \bar{Z}_{n}$	$\begin{aligned} & \hline 2.5 \\ & 1.5 \end{aligned}$	4.9 3.0	$\begin{aligned} & \hline 7.0 \\ & 3.5 \end{aligned}$	2.0 1.0	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	2.0 1.0	$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	ns

[^0]: H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Don't Care

