DUAL 4-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

SN54/74LS253

The LSTTL/MSI SN54/74LS253 is a Dual 4-Input Multiplexer with 3-state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable (E_{0}) inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Schottky Process for High Speed
- Multifunction Capability
- Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High Speed Termination Effects

PIN NAMES
S_{0}, S_{1}
Common Select Inputs
Multiplexer A
$\bar{E}_{0 a} \quad$ Output Enable (Active LOW) Input
$\mathrm{IO}_{\mathrm{O}}-\mathrm{I}_{3} \mathrm{a} \quad$ Multiplexer Inputs
$\mathrm{Z}_{\mathrm{a}} \quad$ Multiplexer Output (Note b)
Multiplexer B
E 0 b
$l_{0 b}-I_{3 b}$
Z_{b}
Output Enable (Active LOW) Input
Multiplexer Inputs
Multiplexer Output (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
65 (25) U.L.	15 (7.5) U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
65 (25) U.L.	15 (7.5) U.L.

NOTES:

a) 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW
b) The Output LOW drive factor is 7.5 U.L. for Military (54) and 15 U.L. for Commercial (74) Temperature Ranges. The Output HIGH drive factor is 25 U.L. for Military (54) and 65 U.L. for Commercial (74) Temperature Ranges.

DUAL 4-INPUT MULTIPLEXER

 WITH 3-STATE OUTPUTSLOW POWER SCHOTTKY

	J SUFFIX CERAMIC CASE 620-09
${ }_{16} x_{1}^{2}+x=x=y=0$	N SUFFIX PLASTIC CASE 648-08
$16-\frac{1}{60}$	$\begin{gathered} \text { D SUFFIX } \\ \text { SOIC } \\ \text { CASE 751B-03 } \end{gathered}$
ORDERING INFORMATION	
SN54LSXXXJ SN74LSXXXN SN74LSXXXD	Ceramic Plastic SOIC

SN54/74LS253

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS253 contains two identical 4-Input Multiplexers with 3 -state outputs. They select two bits from four sources selected by common select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The 4 -input multiplexers have individual Output Enable ($\mathrm{E}_{0 \mathrm{a}}, \mathrm{E}_{0 \mathrm{~b}}$) inputs which when HIGH, forces the outputs to a high impedance (high Z) state

The LS253 is the logic implementation of a 2 -pole, 4 -position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below:
$Z_{a}=\bar{E}_{0 a} \cdot\left(l_{0 a} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 a} \cdot \bar{S}_{1} \cdot s_{0} \cdot I_{2 a} \cdot s_{1} \cdot \bar{S}_{0}+I_{3 a} \cdot S_{1}\right.$ - S_{0})
$Z_{b}=\bar{E}_{0 b} \cdot\left(I_{0 b} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 b} \cdot \bar{S}_{1} \cdot S_{0} \cdot I_{2 b} \cdot S_{1} \cdot \bar{S}_{0}+I_{3 b} \cdot S_{1}\right.$ - So)

If the outputs of 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap.

TRUTH TABLE

SELECT INPUTS			DATA INPUTS			OUTPUT ENABLE	OUTPUT
$\mathrm{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{3}}$	$\mathrm{E}_{\mathbf{0}}$	Z
X	X	X	X	X	X	H	(Z)
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
H	L	X	L	X	X	L	L
H	L	X	H	X	X	L	H
L	H	X	X	L	X	L	L
L	H	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

$\mathrm{H}=$ HIGH Level
L = LOW Level
X = Irrelevant
(Z) = High Impedance (off)

Address inputs S_{0} and S_{1} are common to both sections.

SN54/74LS253

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54			-1.0	mA
		74			-2.6	
IOL	Output Current - Low	54			12	mA
		74			24	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed All Inputs	HIGH Voltage for
V_{IL}	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs	
		74			0.8			
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}$	-18 mA
V_{OH}	Output HIGH Voltage	54	2.4	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{OH}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$or VIL per Truth Table	
		74	2.4	3.1		V		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{I}^{\text {OL }}=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \text { per Truth Table } \end{aligned}$
		74		0.35	0.5	V	$\mathrm{lOL}=24 \mathrm{~mA}$	
Iozh	Output Off Current HIGH				20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$	
Iozl	Output Off Current LOW				-20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	
${ }_{\text {IH }}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$	
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
Ios	Short Circuit Current (Note 1)		-30		-130	mA	$\mathrm{V}_{\text {CC }}=$ MAX	
ICC	Power Supply Current				12	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}$	
					14	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{E}}=4.5 \mathrm{~V}$	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$ See SN54LS251 for Waveforms

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
$\begin{aligned} & \hline \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 17 \\ & 13 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	ns	Figure 1	$\begin{aligned} & C_{L}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
$\begin{aligned} & \hline \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, Select to Output		$\begin{aligned} & 30 \\ & 21 \end{aligned}$	$\begin{aligned} & 45 \\ & 32 \end{aligned}$	ns	Figure 1	
$\begin{aligned} & \hline \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Output Enable Time		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 28 \\ & 23 \end{aligned}$	ns	Figures 4, 5	
$\begin{aligned} & \hline \text { tpHZ } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 27 \\ & 18 \end{aligned}$	$\begin{aligned} & 41 \\ & 27 \end{aligned}$	ns	Figures 3, 5	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$

Case 648-08 N Suffix
16-Pin Plastic

NOTES.

1. DIMENSIONING AND TOLERANCING PER ANS

Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A AND B DO NOT INCLUDE MOLD

PROTRUSION.
4. MAXIMUM MOLD PROTRUSION $0.15(0.006)$ PER SIDE.
5. $751 \mathrm{~B}-01$ IS OBSOLETE, NEW STANDARD 751B-03.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.09	0.04	0.019
F	0.40	1.25	0.016	0.049
G	1.27	$1.25 C$	0.050	BS
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	$\mathbf{7}^{\circ}$	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL
4. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL
6. $648-01$ THRU -07 OBSOLETE, NEW STANDARD 648-08.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	18.80	19.55	0.740	0.770
B	6.35	6.85	0.250	0.270
C	3.69	4.44	0.145	0.175
D	0.39	0.53	0.015	0.021
F	1.02	1.77	0.040	0.070
G	2.54 BSC		0.100 BSC	
H	1.27 BSC		0.050 BSC	
J	0.21	0.38	0.008	0.015
K	2.80	3.30	0.110	0.130
L	7.50	7.74	0.295	0.305
M	0°	10°	0°	10°
S	0.51	1.01	0.020	0.040

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION LTO CENTER OF LEAD WHEN

FORMED PARALLEL.
4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.
5. $620-01$ THRU -08 OBSOLETE, NEW STANDARD 620-09

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A	19.05	19.55	0.750	0.770	
B	6.10	7.36	0.240	0.290	
C	-	4.19	-	0.165	
D	0.39	0.53	0.015		0.021
E	1.27		BSC	0.050	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and ${ }^{\boldsymbol{\omega} / \boldsymbol{l}}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

MOTOROLA

