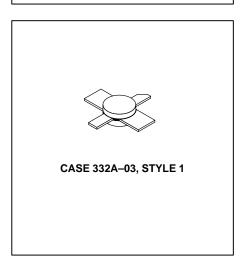
The RF Line Microwave Pulse Power Transistors

Designed for Class B and C common base amplifier applications in short and long pulse TACAN, IFF, DME, and radar transmitters.


- Guaranteed Performance @ 1090 MHz, 50 Vdc Output Power = 35 Watts Peak Minimum Gain = 10 dB
- 100% Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- Industry Standard Package
- Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input Matching for Broadband Operation

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	60	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector-Current — Continuous	IC	2.0	Adc
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	PD	35 200	Watts mW/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

MRF1035MB

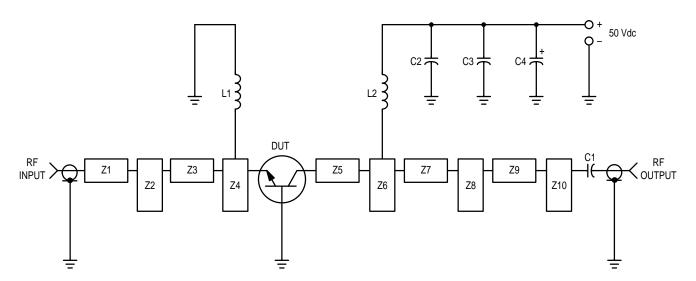
35 W (PEAK), 960-1215 MHz MICROWAVE POWER TRANSISTORS NPN SILICON

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$R_{ heta JC}$	5.0	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 20 mAdc, V _{BE} = 0)	V(BR)CES	60	_	_	Vdc
Collector-Base Breakdown Voltage (IC = 20 mAdc, IE = 0)	V(BR)CBO	60	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 2.0 mAdc, I _C = 0)	V(BR)EBO	4.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)	ICBO	_	_	2.0	mAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 500 mAdc, V _{CE} = 5.0 Vdc)	hFE	10	40	100	_


^{1.} These devices are designed for RF operation. The total device dissipation rating applies only when the device is operated as RF amplifiers.

^{2.} Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS — **continued** ($T_C = 25$ °C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS					•
Output Capacitance (V _{CB} = 50 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	10	15	pF
FUNCTIONAL TESTS (Pulse Width = 10 μs, Duty Cycle = 1%)					
Common-Base Amplifier Power Gain (V _{CC} = 50 Vdc, P _{out} = 35 W Peak, f = 1090 MHz)	GPB	10	12.4	_	dB
Collector Efficiency (V _{CC} = 50 Vdc, P _{out} = 35 W Peak, f = 1090 MHz)	η	30	34	_	%
Load Mismatch (V _{CC} = 50 Vdc, P _{Out} = 35 W Peak, f = 1090 MHz, VSWR = 10:1 All Phase Angles)	Ψ	No Degradation in Power Output			

C1, C2 — 220 pF 100 mil Chip Capacitor C3 — 0.1 μ F C4 — 10 μ F/75 V Electrolytic L1, L2 — 3 Turns #18 AWG, 1/8" ID Z1–Z10 — Microstrip, See Photomaster Board Material — 0.031" Glass Teflon ϵ_Γ = 2.5

Figure 1. 1090 MHz Test Circuit

Figure 2. Output Power versus Input Power

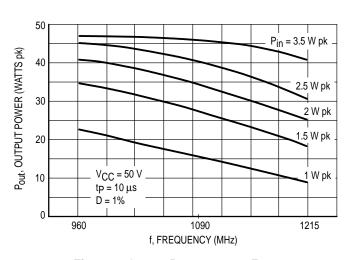


Figure 3. Output Power versus Frequency

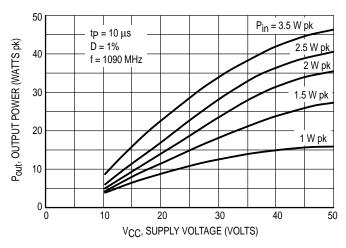


Figure 4. Output Power versus Supply Voltage

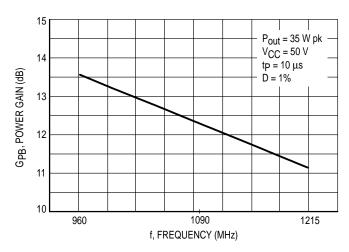
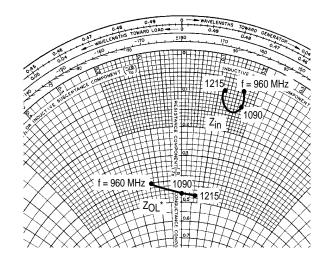
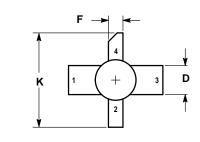



Figure 5. Power Gain versus Frequency

 $P_{out} = 35 \text{ W pk} \quad V_{CC} = 50 \text{ V}$ $t_p = 10 \,\mu s$ D = 1%


f	Z _{in}	Z _{OL} *
MHz	Ohms	Ohms
960	3.8 + j8.2	7.5 – j3.3
1090	6.0 + j8.2	9.0 + j0
1215	4.2 + j5.7	9.1 + j1.7

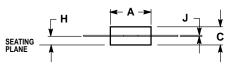

 Z_{OL}^* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage, and frequency.

Figure 6. Series Equivalent Input/Output Impedances

MOTOROLA RF DEVICE DATA MRF1035MB

PACKAGE DIMENSIONS

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.270	0.290	6.86	7.36
C	0.115	0.135	2.93	3.42
D	0.195	0.205	4.96	5.20
F	0.095	0.105	2.42	2.66
Н	0.050	0.070	1.27	1.77
J	0.003	0.007	0.08	0.17
K	0.600		15.24	

STYLE 1:

PIN 1. BASE 2. EMITTER

- 3. BASE 4. COLLECTOR

CASE 332A-03 ISSUE D

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical parameters, including or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fee arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola. Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

 $\textbf{Mfax}^{\text{\tiny{TM}}}\text{: RMFAX0@email.sps.mot.com} - \text{TOUCHTONE } 602-244-6609$

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

INTERNET: http://motorola.com/sps

MRF1035MB/D