The RF Line **NPN Silicon** RF Power Transistor

Designed for 28 Volt microwave large–signal, common base, Class–C CW amplifier applications in the range 1600 – 1640 MHz.

- Specified 28 Volt, 1.6 GHz Class–C Characteristics Output Power = 30 Watts Minimum Gain = 7.5 dB, @ 30 Watts Minimum Efficiency = 40% @ 30 Watts
- Characterized with Series Equivalent Large–Signal Parameters from 1500 MHz to 1700 MHz
- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MRF16030

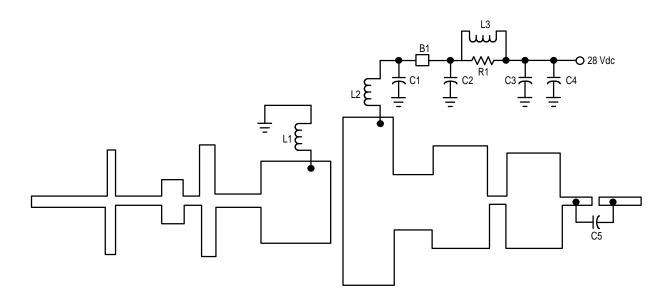
30 WATTS, 1.6 GHz RF POWER TRANSISTOR NPN SILICON

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCES	60	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector–Current	IC	4.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	103 0.58	Watts °C/W
Storage Temperature Range	T _{stg}	-65 to +150	°C

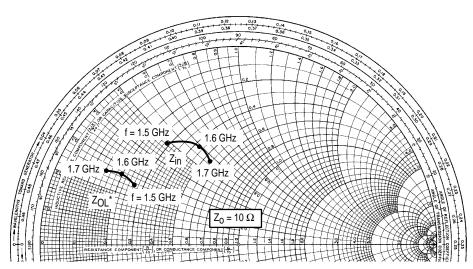
THERMAL CHARACTERISTICS

Thermal Resistance — Junction to Case (1) (2) $R_{\theta JC}$ 1.7°C/W


(1) Thermal measurement performed using CW RF operating condition.

(2) Thermal resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 100 mAdc, V _{BE} = 0)	V(BR)CES	55	_	_	Vdc
Collector–Base Breakdown Voltage ($I_C = 100 \text{ mAdc}, I_E = 0$)	V(BR)CBO	55	_	_	Vdc
Emitter–Base Breakdown Voltage ($I_E = 10 \text{ mAdc}, I_C = 0$)	V(BR)EBO	4.0	_	_	Vdc
Collector Cutoff Current (V _{CE} = 28 Vdc, V _{BE} = 0)	ICES	_	_	10	mAdc
ON CHARACTERISTICS	· · ·			•	•
DC Current Gain (I _{CE} = 1.0 Adc, V _{CE} = 5.0 Vdc)	hFE	20	35	80	—
FUNCTIONAL TESTS				•	•
Collector–Base Amplifier Power Gain (V _{CC} = 28 Vdc, P _{out} = 30 Watts, f = 1600/1640 MHz)	G _{pe}	7.5	7.7	_	dB
Collector Efficiency (V _{CC} = 28 Vdc, P _{out} = 30 Watts, f = 1600/1640 MHz)	η	40	45	_	%
Input Return Loss (V _{CC} = 28 Vdc, P _{out} = 30 Watts, f = 1600/1640 MHz)	I _{RL}	8.0	_	_	dB
Output Mismatch Stress V _{CC} = 28 Vdc, P _{out} = 30 Watts, f = 1600 MHz, Load VSWR = 3:1, All phase angles at frequency of test	Ψ	No I	Degradation ir	Output Pow	/er

Board Material – Teflon[®] Glass Laminate Dielectric Thickness = 0.30", ϵ_{f} = 2.55", 2.0 oz. Copper

B1	Fair Rite Bead on #24 Wire	C4	47 μF, 50 V, Electrolytic
C1, C5	100 pF, B Case, ATC Chip Cap	L1, L2	3 Turns, #18, 0.133" ID, 0.15" Long
C2	0.1 μF, Dipped Mica Cap	L3	9 Turns, #24 Enamel
C3	0.1 μF, Chip Cap	R1	82 Ω, 1.0 W, Carbon

Figure 1. MRF16030 Test Fixture Schematic

 V_{CC} = 28 Vdc, P_{out} = 30 W

f MHz	Z _{in} Ohms	Z _{OL} * Ohms
1500	3.05 + j 4.88	2.66 + j 2.53
1600	4.32 + j 6.00	1.79 + j 2.80
1700	5.62 + j 5.79	1.51 + j 2.64

 Z_{OL}^* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

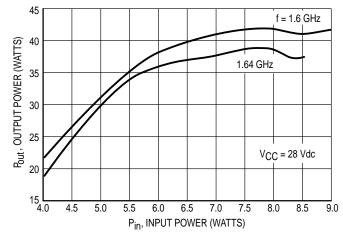
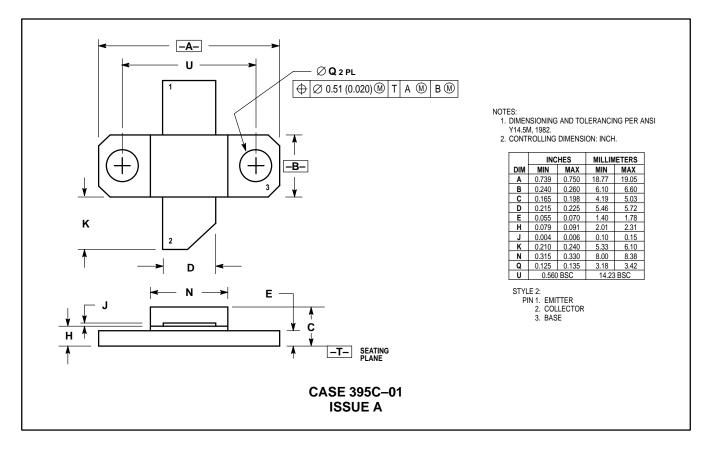



Figure 3. Output Power versus Input Power

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **(A)** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employee.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 Mfax is a trademark of Motorola, Inc.

Mfax[™]: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609

– US & Canada ONLY 1–800–774–1848

INTERNET: http://motorola.com/sps

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488

 \Diamond