
The RF Line NPN Silicon High-Frequency Transistor

 \ldots designed for wideband amplifier, driver or oscillator applications in military, mobile, and aircraft radio.

- Specified 28 Volt, 400 MHz Characteristics Output Power = 1.0 Watt Power Gain = 15 dB Min Efficiency = 45% Typ
- Emitter Ballast and Low Current Density for Improved MTBF
- Common Emitter for Improved Stability

1.0 W, 400 MHz HIGH-FREQUENCY TRANSISTOR NPN SILICON

CASE 305A-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector–Emitter Voltage	VCEO	30	Vdc	
Collector-Base Voltage	VCBO	40	Vdc	
Emitter-Base Voltage	VEBO	3.0	Vdc	
Collector Current — Continuous	lC	150	mAdc	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	6.1 35	Watts mW/°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	

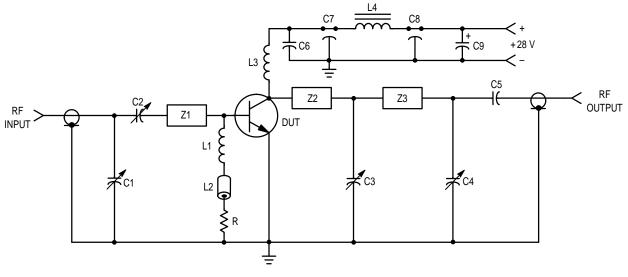
THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Case	R _θ JC	28.5	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage ($I_C = 10 \text{ mAdc}, I_B = 0$)	V(BR)CEO	30	—	—	Vdc
Collector–Emitter Breakdown Voltage ($I_C = 5.0 \text{ mAdc}, V_{BE} = 0$)	V(BR)CES	35	—	-	Vdc
Collector–Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}, I_E = 0$)	V(BR)CBO	35	—	-	Vdc
Emitter–Base Breakdown Voltage ($I_E = 1.0 \text{ mAdc}, I_C = 0$)	V(BR)EBO	3.0	—		Vdc
Collector Cutoff Current ($V_{CE} = 20 \text{ Vdc}, I_B = 0$)	ICEO	—	—	1.0	mAdc

(continued)

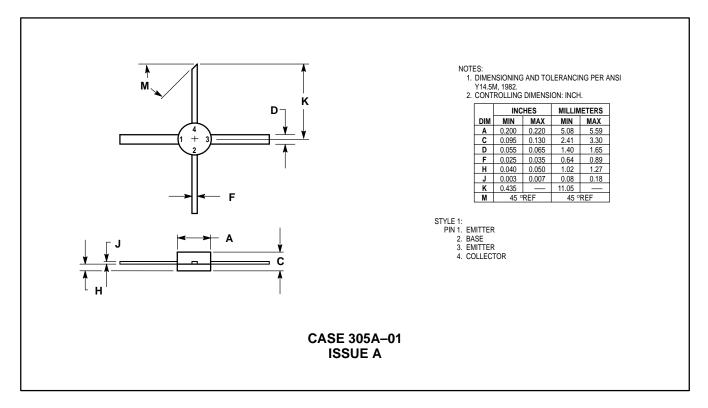


ELECTRICAL CHARACTERISTICS — continued ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Мах	Unit
ON CHARACTERISTICS					
DC Current Gain (I _C = 100 mAdc, V _{CE} = 10 Vdc)	hFE	20	60	150	—
DYNAMIC CHARACTERISTICS					
Current–Gain — Bandwidth Product (I _C = 100 mAdc, V _{CE} = 20 Vdc, f = 200 MHz)	fT	-	2.5	—	GHz
Output Capacitance (V _{CB} = 28 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	—	3.5	5.0	pF
FUNCTIONAL TESTS					
Common–Emitter Amplifier Power Gain (1) (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz)	G _{pe}	15	16	_	dB
Collector Efficiency (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz)	η	—	45	_	%
Series Equivalent Input Impedance (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz)	Z _{in}	_	6.4 – j4.8	_	Ohms
Series Equivalent Output Impedance (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz)	Z _{out}	—	75 – j45	—	Ohms

NOTE:

1. Class C


C1, C2, C4 — 1.0–20 pF JOHANSON 9063 C3 — 1.0–10 pF JOHANSON C5 — 150 pF Chip C6 — 0.1 μ F C7, C8 — 680 pF Feedthru C9 — 1.0 μ F TANTALUM

- L1, L3 5 Turns, AWG #20, 1/4" I.D. L2 — Ferrite Bead, FERROXCUBE
- No. 56–590–65/4B
- L4 FERROXCUBE VK200–20/4B
- Input/Output Connectors Type N
- Board Glass Teflon, $\varepsilon = 2.56$, t = 0.062"

Figure 1. 400 MHz Power Gain Test Circuit

R — 4.7 Ohms, 1/4 W Z1 — 2.0" x 0.1" MICROSTRIP LINE Z2, Z3 — 2.6" x 0.1" MICROSTRIP LINE

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "" are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employee.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

