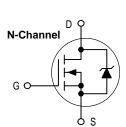
Designer's™ Data Sheet

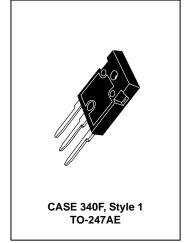
TMOS E-FET TM

Power Field Effect Transistor TO-247 with Isolated Mounting Hole

N-Channel Enhancement-Mode Silicon Gate

This advanced TMOS E-FET is designed to withstand high energy in the avalanche and commutation modes. The new energy efficient design also offers a drain-to-source diode with a fast recovery time. Designed for low voltage, high speed switching applications in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional safety margin against unexpected voltage transients.


- Avalanche Energy Specified
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- · Diode is Characterized for Use in Bridge Circuits
- I_{DSS} and V_{DS(on)} Specified at Elevated Temperature
- Isolated Mounting Hole Reduces Mounting Hardware



Motorola Preferred Device

TMOS POWER FET
33 AMPERES
100 VOLTS
RDS(on) = 0.06 OHM

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	100	Vdc
Drain-Gate Voltage ($R_{GS} = 1.0 \text{ M}\Omega$)	V _{DGR}	100	Vdc
Gate-Source Voltage — Continuous — Non-Repetitive (t _p ≤ 10 ms)	V _{GS} V _{GSM}	± 20 ± 40	Vdc Vpk
Drain Current — Continuous @ 25° C — Continuous @ 100° C — Single Pulse ($t_p \le 10 \mu s$)	I _D I _{DM}	33 20 99	Adc Apk
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	125 1.0	Watts W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy — Starting T _J = 25° C (V _{DD} = 25 Vdc, V _{GS} = 10 Vdc, I _L = 33 Apk, L = 1.000 mH, R _G = 25 Ω)	EAS	545	mJ
Thermal Resistance — Junction to Case — Junction to Ambient	R _θ JC R _θ JA	1.0 40	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	TL	260	°C

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

E-FET and Designer's are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.

Preferred devices are Motorola recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Temperature Coefficient (Negative)	Ch	Symbol	Min	Тур	Max	Unit	
(V _{DS} = V _{GS} , I _D = 250 μAdc)	OFF CHARACTERISTICS					•	•
Drain-Source Breakdown Voltage (V _{GS} = 0 Vdc, lp = 250 μAde)	$(V_{DS} = V_{GS}, I_{D} = 250 \mu\text{Adc})$	V _{GS(th)}	2.0 —	 7.0	4.0 —	Vdc mV/°C	
(V _{SS} = 0 Vdc, I _D = 250 μAdc) Temperature Coefficient (Positive) Zero Gate Voltage Drain Current (V _{DS} = 100 Vdc, V _{SS} = 0 Vdc, I _D = 25°C) Gate-Body Leakage Current (V _{GS} = ± 20 Vdc, V _{DS} = 0) Brain-Source On-Voltage (V _{SS} = 10 Vdc) (I _D = 33 Adc) (I _D = 16.5 Adc, I _D = 25°C) Input Capacitance Output Capacitance Output Capacitance (V _{DS} = 25 Vdc, V _{SS} = 0 Vdc, I _D = 33 Adc, V _{GS} = 0 Vdc, I _D = 33 Adc, V _{GS} = 10 Vdc, I _D = 10.0 Vdc, I	Static Drain-Source On-Resistance	R _{DS(on)}	_	0.04	0.06	Ohm	
(V _{DS} = 100 Vdc, V _{GS} = 0 Vdc, T _J = −25°C) Gate-Body Leakage Current (V _{GS} ± 20 Vdc, V _{DS} = 0) ON CHARACTERISTICS (1) Drain-Source On-Voltage (V _{GS} = 10 Vdc) (I _D = 33 Adc, V _{GS} = 0 Vdc, I _D = 33 Adc, V _{GS} = 10 Vdc) (I _D = 33 Adc, V _{GS} = 0 Vdc, I _D = 33 Adc, V _{GS} = 10 Vdc) (I _D = 33 Adc, V _{GS} = 0 Vdc, I _D = 34 Adc, V _{GS} = 0 Vdc, I _D = 34 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 Adc, V _{GS} = 0 Vdc, I _D = 35 A	$(V_{GS} = 0 \text{ Vdc}, I_{D} = 250 \mu\text{Adc})$	V(BR)DSS	l			Vdc mV/°C	
ON CHARACTERISTICS (1) Drain-Source On-Voltage (VGS = 10 Vdc) (ID = 33 Adc, VGS = 10 Vdc) (ID = 16.5 Adc, T _J = -25°C)	$(V_{DS} = 100 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	IDSS	_	_	1	μAdc	
Drain-Source On-Voltage (VGS = 10 Vdc) (ID = 13.5 Adc) (ID = 14.5 Adc)	Gate-Body Leakage Current (VGS	$_{S} = \pm 20 \text{ Vdc}, V_{DS} = 0)$	IGSS	_	_	100	nAdc
(I) = 33 Adc) — 1.6 2.4 (I) = 16.5 Adc, T _J = -25°C) — 2.1 Forward Transconductance (V _{DS} = 8.0 Vdc, I _D = 16.5 Adc) gFS 8.0 — 7 m DYNAMIC CHARACTERISTICS Input Capacitance (V _{DS} = 25 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz) Ciss — 1830 2500 Output Capacitance (V _{DS} = 25 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz) Crss — 559 1100 SWITCHING CHARACTERISTICS (2) Turn-On Delay Time (V _{DS} = 50 Vdc, I _D = 33 Adc, V _{GS} = 10 Vdc, R _G = 9.1 Ω) td(on) — 18 40 Right Time (V _{DS} = 80 Vdc, I _D = 33 Adc, V _{GS} = 10 Vdc) tf — 164 330 Turn-Off Delay Time (V _{DS} = 80 Vdc, I _D = 33 Adc, V _{GS} = 10 Vdc) QT — 52 1110 — 110 — 12 — 22 — 32 — 22 — 32 — 22 — 32 — 22 — 32 — 22 — 32 — 22 — 32 — 20 — 20 — 20 — 20 — 20 — 20 — 20 — 20 — 20 <t< td=""><td>ON CHARACTERISTICS (1)</td><td></td><td></td><td></td><td>-</td><td></td><td></td></t<>	ON CHARACTERISTICS (1)				-		
DYNAMIC CHARACTERISTICS Input Capacitance (VDS = 25 Vdc, VGS = 0 Vdc, f = 1.0 MHz) Ciss - 1830 2500 Coss - 678 1200 Crss - 559 1100 Crss - 164 330 Crss - 164 Cr	$(I_D = 33 \text{ Adc})$	V _{DS(on)}		1.6 —	1	Vdc	
Toput Capacitance	Forward Transconductance (VDS	= 8.0 Vdc, I _D = 16.5 Adc)	9FS	8.0	_	_	mhos
Output Capacitance (V _{DS} = 25 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz) C _{OSS} — 678 1200 Reverse Transfer Capacitance C _{FSS} — 559 1100 SWITCHING CHARACTERISTICS (2) Turn-On Delay Time (V _{DD} = 50 Vdc, I _D = 33 Adc, V _{GS} = 10 Vdc, R _G = 9.1 Ω) td(on) — 18 40 Rise Time (V _{DD} = 50 Vdc, I _D = 33 Adc, V _{GS} = 10 Vdc, R _G = 9.1 Ω) td(off) — 48 100 Fall Time (V _{DS} = 80 Vdc, I _D = 33 Adc, V _{GS} = 0 Vdc, V _{GS} = 10 Vdc) Q _T — 52 110 Gate Charge (See Figure 8) (V _{DS} = 80 Vdc, I _D = 33 Adc, V _{GS} = 0 Vdc) Q ₁ — 12 — 20 Q ₂ — 32 — 24 — 32 — 32 — 32 — 32 SOURCE-DRAIN DIODE CHARACTERISTICS Forward On-Voltage (1) (I _S = 33 Adc, V _{GS} = 0 Vdc, T _J = 125°C) VSD — 1.0 2.0 — 2.0 Reverse Recovery Time (See Figure 14) (I _S = 33 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/μs) t ₁ — 108 — 108 — 108 — 108 — 108 — 109 — 109 — 109 — 109 — 10	DYNAMIC CHARACTERISTICS						
Reverse Transfer Capacitance f = 1.0 MHz Coss - 576 1200	Input Capacitance	05)(1-)(0.)(1-	C _{iss}	_	1830	2500	pF
Reverse Transfer Capacitance C _{rss} — 559 1100	Output Capacitance		C _{oss}	_	678	1200	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	,	C _{rss}	_	559	1100	
Rise Time	SWITCHING CHARACTERISTICS	(2)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	1	^t d(on)	_	18	40	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		t _r	_	164	330]
Cate Charge (See Figure 8) (V _{DS} = 80 Vdc, I _D = 33 Adc, V _{GS} = 10 Vdc) Q ₁	Turn-Off Delay Time		^t d(off)	_	48	100]
$ (See \ Figure \ 8) \qquad (V_{DS} = 80 \ Vdc, \ I_{D} = 33 \ Adc, \ V_{GS} = 10 \ Vdc) \qquad \frac{Q_{1}}{Q_{2}} \qquad - \qquad 12 \qquad - \qquad \\ Q_{2} \qquad - \qquad 32 \qquad - \qquad \\ Q_{3} \qquad - \qquad 24 \qquad - \qquad \\ \\ SOURCE-DRAIN \ DIODE \ CHARACTERISTICS \\ \hline Forward \ On-Voltage \ (1) \qquad (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc) \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.044 \qquad - \qquad \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.08 \qquad - \qquad \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.08 \qquad - \qquad \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 \qquad 2.0 \\ (I_{S} = 33 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \qquad - \qquad 1.0 $	Fall Time		t _f	_	83	170	
	•		QT	_	52	110	nC
SOURCE-DRAIN DIODE CHARACTERISTICS Og 3	(See Figure 8)		Q ₁	_	12	_	-
Forward On-Voltage (1) $ \begin{pmatrix} (I_S = 33 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \\ (I_S = 33 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C}) \end{pmatrix} \qquad \begin{pmatrix} V_{SD} \\ - \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} 1.0 \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} 2.0 \\ - \\ 0.98 \end{pmatrix} $ Reverse Recovery Time $ \begin{pmatrix} (I_S = 33 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ - \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} I_{TT} \\ - \\ - \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} I_{TT} \\ - \\ - \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} I_{TT} \\ - \\ - \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} I_{TT} \\ - \\ - \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} I_{TT} \\ - \\ - \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} I_{TT} \\ - \\ - \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} I_{TT} \\ - \\ - \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} I_{TT} \\ - \\ - \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} I_{TT} \\ - \\ - \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} I_{TT} \\ - \\ - \\ - \\ 0.98 \end{pmatrix} \qquad \begin{pmatrix} I_{TT} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $		V _{GS} = 10 Vdc)	Q ₂	_	32	_	
Forward On-Voltage (1)			Q ₃	_	24	_	
$(IS = 33 \text{ Adc}, VGS = 0 \text{ Vdc}, TJ = 125^{\circ}\text{C})$ $(IS = 33 \text{ Adc}, VGS = 0 \text{ Vdc}, TJ = 125^{\circ}\text{C})$ $(IS = 33 \text{ Adc}, VGS = 0 \text{ Vdc}, TJ = 125^{\circ}\text{C})$ $(IS = 33 \text{ Adc}, VGS = 0 \text{ Vdc}, TI = 125^{\circ}\text{C})$ $(IS = 33 \text{ Adc}, VGS = 0 \text{ Vdc}, TI = 125^{\circ}\text{C})$ $(IS = 33 \text{ Adc}, VGS = 0 \text{ Vdc}, TI = 125^{\circ}\text{C})$ $(IS = 33 \text{ Adc}, VGS = 0 \text{ Vdc}, TI = 125^{\circ}\text{C})$ $(IS = 33 \text{ Adc}, VGS = 0 \text{ Vdc}, TI = 125^{\circ}\text{C})$ $(IS = 33 \text{ Adc}, VGS = 0 \text{ Vdc}, TI = 125^{\circ}\text{C})$ $(IS = 33 \text{ Adc}, VGS = 0 \text{ Vdc}, TI = 125^{\circ}\text{C})$ $(IS = 33 \text{ Adc}, VGS = 0 \text{ Vdc}, TI = 125^{\circ}\text{C})$ $(IS = 33 \text{ Adc}, VGS = 0 \text{ Vdc}, TI = 125^{\circ}\text{C})$ $Ta = 100 \text{ Add} = 100 \text{ A}/\mu \text{s}$ $Ta = 100 \text{ Add} = 100 \text{ A}/\mu \text{s}$ $Ta = 100 \text{ Add} = 100 \text{ A}/\mu \text{s}$ $Ta = 100 \text{ Add} = 100 \text{ A}/\mu \text{s}$ $Ta = 100 \text{ Add} = 100 \text{ A}/\mu \text{s}$ $Ta = 100 \text{ Add} = 100 \text{ A}/\mu \text{s}$ $Ta = 100 \text{ Add} = 100 \text{ A}/\mu \text{s}$ $Ta = 100 \text{ Add} = 100 \text{ A}/\mu \text{s}$ $Ta = 100 \text{ Add} = 100 \text{ A}/\mu \text{s}$ $Ta = 100 \text$		TERISTICS					
$ (I_S = 33 \text{ Adc, V}_{GS} = 0 \text{ Vdc, } \\ \text{dI}_S/\text{dt} = 100 \text{ A/}\mu\text{s}) $ $ t_0 \qquad t_$	Forward On-Voltage (1)	$(I_S = 33 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 33 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	VSD	_ _		2.0 —	Vdc
$(IS = 33 \text{ Adc, } VGS = 0 \text{ Vdc,} \\ dIS/dt = 100 \text{ A}/\mu\text{s}) \\ \hline t_b & - & 36 & - \\ \hline Q_{RR} & - & 0.93 & - \\ \hline \textbf{INTERNAL PACKAGE INDUCTANCE} \\ \hline Internal Drain Inductance \\ (Measured from the drain lead 0.25" from package to center of die) \\ \hline Internal Source Inductance \\ \hline L_S & - & 13 & - \\ \hline \end{tabular}$		(I _S = 33 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/μs)	t _{rr}	_	144	_	ns
	(See Figure 14)		ta	_	108	_	
INTERNAL PACKAGE INDUCTANCE Internal Drain Inductance (Measured from the drain lead 0.25" from package to center of die) Internal Source Inductance			t _b	_	36	_	
Internal Drain Inductance (Measured from the drain lead 0.25" from package to center of die) Internal Source Inductance LD 4.5 — 4.5 — 13 —	Reverse Recovery Stored Charge	Q _{RR}	_	0.93		μC	
(Measured from the drain lead 0.25" from package to center of die) Internal Source Inductance L _S - 13 -	INTERNAL PACKAGE INDUCTAN	CE					
			LD	_	4.5	_	nH
		LS	_	13	_	nH	

MOTOROLA MTW33N10E

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperature.

TYPICAL ELECTRICAL CHARACTERISTICS

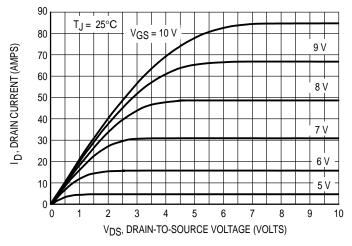


Figure 1. On-Region Characteristics

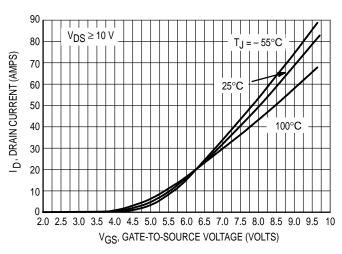


Figure 2. Transfer Characteristics

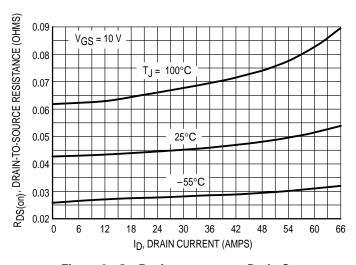


Figure 3. On-Resistance versus Drain Current and Temperature

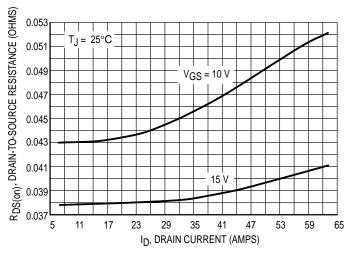


Figure 4. On-Resistance versus Drain Current and Gate Voltage

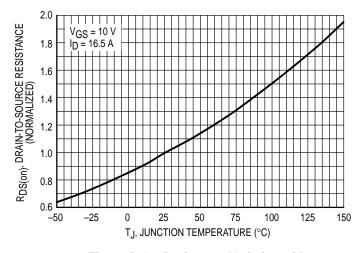


Figure 5. On-Resistance Variation with Temperature

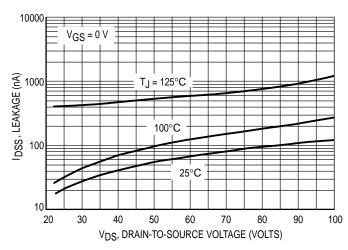


Figure 6. Drain-To-Source Leakage Current versus Voltage

MTW33N10E MOTOROLA

POWER MOSFET SWITCHING

Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals (Δt) are determined by how fast the FET input capacitance can be charged by current from the generator.

The published capacitance data is difficult to use for calculating rise and fall because drain-gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input current (IG(AV)) can be made from a rudimentary analysis of the drive circuit so that

$$t = Q/I_{G(AV)}$$

During the rise and fall time interval when switching a resistive load, VGS remains virtually constant at a level known as the plateau voltage, VSGP. Therefore, rise and fall times may be approximated by the following:

$$t_{\Gamma} = Q_2 \times R_G/(V_{GG} - V_{GSP})$$

$$t_f = Q_2 \times R_G/V_{GSP}$$

where

 V_{GG} = the gate drive voltage, which varies from zero to V_{GG}

RG = the gate drive resistance

and Q2 and VGSP are read from the gate charge curve.

During the turn-on and turn-off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network. The equations are:

$$t_{d(on)} = RG C_{iss} In [V_{GG}/(V_{GG} - V_{GSP})]$$

 $t_{d(off)} = R_G C_{iss} In (V_{GG}/V_{GSP})$

The capacitance (C_{iSS}) is read from the capacitance curve at a voltage corresponding to the off-state condition when calculating td(on) and is read at a voltage corresponding to the on-state when calculating td(off).

At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths, produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified.

The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed. The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load; however, snubbing reduces switching losses.

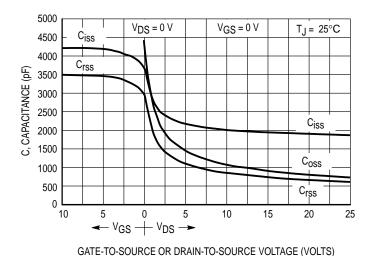
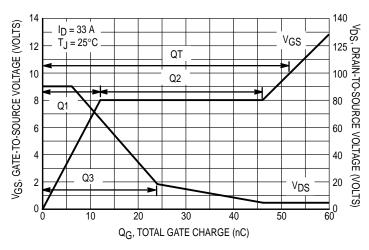



Figure 7. Capacitance Variation

MTW33N10E **MOTOROLA**

1000 VDD = 50 V ID = 33 A VGS = 10 V TJ = 25°C

tr

td(off)

10

RG, GATE RESISTANCE (OHMS)

Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

Figure 9. Resistive Switching Time Variation versus Gate Resistance

DRAIN-TO-SOURCE DIODE CHARACTERISTICS

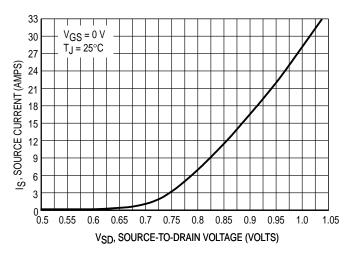
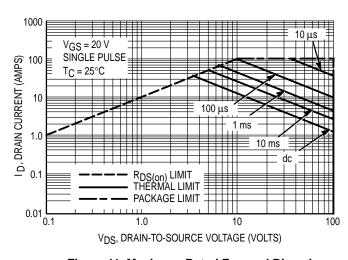


Figure 10. Diode Forward Voltage versus Current

SAFE OPERATING AREA

The Forward Biased Safe Operating Area curves define the maximum simultaneous drain-to-source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature (T_C) of 25°C. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, "Transient Thermal Resistance-General Data and Its Use."

Switching between the off-state and the on-state may traverse any load line provided neither rated peak current (IDM) nor rated voltage (VDSS) is exceeded and the transition time (t_r,t_f) do not exceed 10 μ s. In addition the total power averaged over a complete switching cycle must not exceed (TJ(MAX) – TC)/(R $_{\theta}$ JC).


A Power MOSFET designated E-FET can be safely used in switching circuits with unclamped inductive loads. For

reliable operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non-linearly with an increase of peak current in avalanche and peak junction temperature.

Although many E-FETs can withstand the stress of drain-to-source avalanche at currents up to rated pulsed current (I_{DM}), the energy rating is specified at rated continuous current (I_D), in accordance with industry custom. The energy rating must be derated for temperature as shown in the accompanying graph (Figure 12). Maximum energy at currents below rated continuous I_D can safely be assumed to equal the values indicated.

MTW33N10E MOTOROLA

SAFE OPERATING AREA

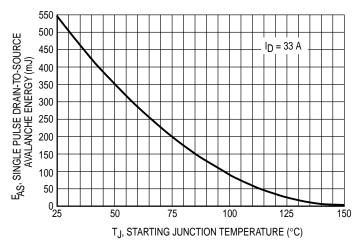


Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

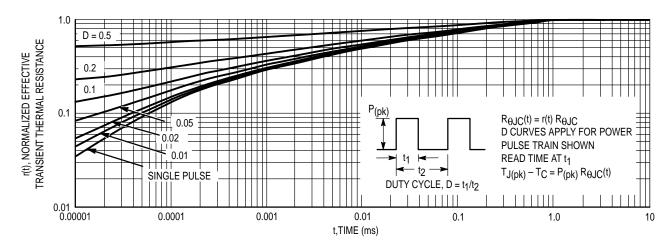


Figure 13. Thermal Response

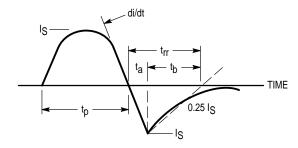
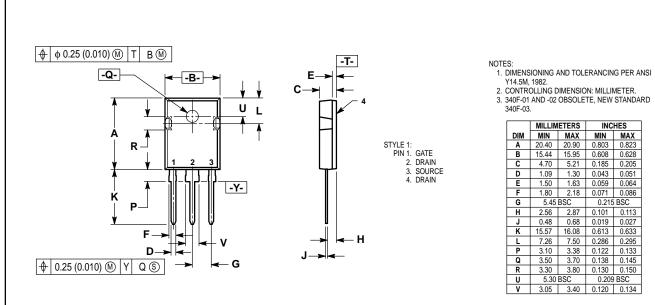



Figure 14. Diode Reverse Recovery Waveform

MOTOROLA MTW33N10E

PACKAGE DIMENSIONS

	MILLIM	ETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	20.40	20.90	0.803	0.823
В	15.44	15.95	0.608	0.628
С	4.70	5.21	0.185	0.205
D	1.09	1.30	0.043	0.051
Е	1.50	1.63	0.059	0.064
F	1.80	2.18	0.071	0.086
G	5.45 BSC		0.215 BSC	
Н	2.56	2.87	0.101	0.113
J	0.48	0.68	0.019	0.027
K	15.57	16.08	0.613	0.633
L	7.26	7.50	0.286	0.295
Р	3.10	3.38	0.122	0.133
ď	3.50	3.70	0.138	0.145
R	3.30	3.80	0.130	0.150
כ	5.30 BSC 0.209 BSC		BSC	

CASE 340F-03

MTW33N10E **MOTOROLA**

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and A are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

