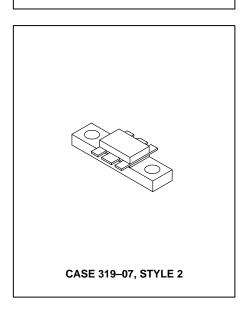
The RF Line NPN Silicon RF Power Transistor

The TP3006 is designed for cellular radio base station amplifiers up to 960 MHz. It incorporates high value emitter ballast resistors, gold metallizations and offers a high degree of reliability and ruggedness. The TP3006 also features input and output matching networks and high impedances. It can easily operate in a full 870–960 MHz bandwidth in a simple circuit.


- · Class AB Operation
- Specified 26 Volts, 960 MHz Characteristics
 Output Power 5 Watts
 Gain 9 dB min
 Efficiency 45% min
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector–Emitter Voltage	VCER	45	Vdc	
Collector-Base Voltage	VCBO	55	Vdc	
Emitter–Base Voltage	VEBO	3.5	Vdc	
Collector-Current — Continuous	IC	2	Adc	
Storage Temperature Range	T _{stg}	- 40 to +100	°C	
Operating Junction Temperature	TJ	200	°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	25 0.14	Watts W/°C	

TP3006

5 W, 870-960 MHz RF POWER TRANSISTOR NPN SILICON

THERMAL CHARACTERISTICS

 $(I_C = 0.5 \text{ Adc}, V_{CE} = 10 \text{ Vdc})$

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (1)	$R_{\theta JC}$	7	°C/W

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•		
Collector–Emitter Breakdown Voltage (I _C = 15 mA, R _{BE} = 75 Ω)	V(BR)CER	45	_	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 4 mAdc)	V(BR)EBO	3.5	_	_	Vdc
Collector–Base Breakdown Voltage (I _C = 15 mAdc)	V(BR)CBO	55	_	_	Vdc
Collector–Emitter Leakage (V _{CE} = 26 V, R _{BE} = 75 Ω)	ICER	_	_	4	mA
ON CHARACTERISTICS	•			•	
DC Current Gain	hFE	15	_	100	_

NOTE: (continued)

1. Thermal resistance is determined under specified RF operating condition at temperature test point (see drawing of the package).

Characteristic	Symbol	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 26 V, I _E = 0, f = 1 MHz)	C _{ob}	_	8.5	_	pF
FUNCTIONAL TESTS IN CW					
Common–Emitter Amplifier Power Gain (V _{CC} = 26 V, P _{out} = 5 W, I _{CQ} = 50 mA, f = 960 MHz)	Gp	9	10.5	_	dB
Collector Efficiency (V _{CC} = 26 V, P _{out} = 5 W, I _Q = 50 mA, f = 960 MHz)	h	45	50	_	%
Input Overdrive (no degradation in P_{Out}) ($V_{CC} = 26 \text{ V}, I_Q = 50 \text{ mA}, f = 960 \text{ MHz}$)	P _{in}	3	_	_	dB
FUNCTIONAL TESTS IN 2 TONES					
3rd Order Intermodulation (V _{CC} = 26 V, P _{peak} = 5 W, I _{CQ} = 50 mA, f = 900 MHz)	IMD3	_	- 46	_	dB
5th Order Intermodulation (V _{CC} = 26 V, P _{peak} = 5 W, I _{CQ} = 50 mA, f = 900 MHz)	IMD5	_	- 46	_	dB

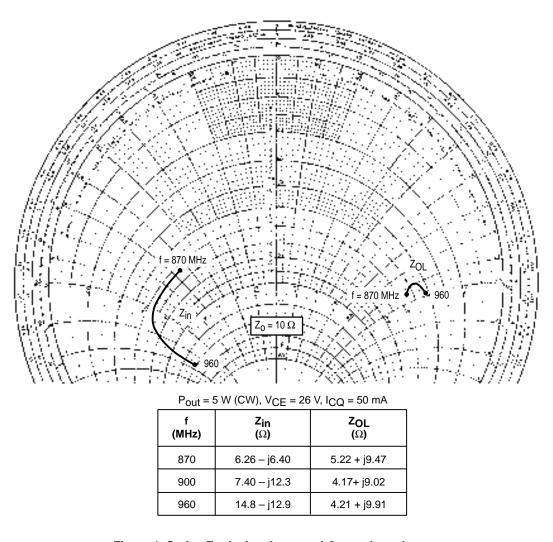
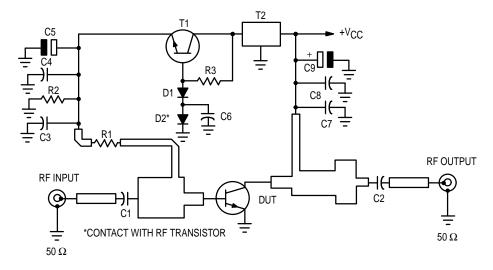



Figure 1. Series Equivalent Input and Output Impedances

C1	22 pF, 5%, Chip Capacitor 0805	R1	2.2 Ω, 5%, Chip Resistor 1206
C2,C3	330 pF, Chip Capacitor 0805	R2	51 Ω, 5%, Chip Resistor 0805
C4,C7	15 nF, 5%, Chip Capacitor 0805	R3	470 Ω , 5%, Chip Resistor 0805 to be adjusted for I _Q = 50 mA
C5,C9	6.8 F, 35 V, Chip Capacitor 0805	T1	SMD Transistor, BCX54 or Similar
C6,C8	330 pF, Chip Capacitor 0805	T2	Voltage Regulator 7805
D1,D2	SMD Diode		

Figure 2. 960 MHz Electrical Schematic

TYPICAL CHARACTERITICS CW – WIDEBAND

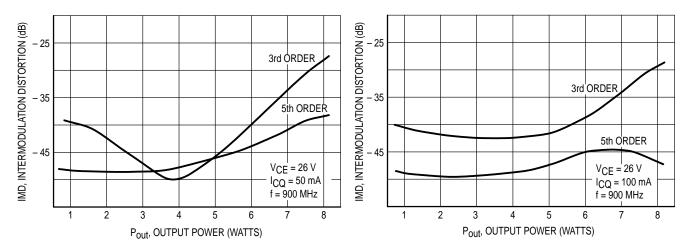
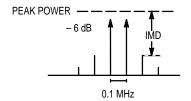



Figure 3. Intermodulation versus Output Power

Figure 4. Intermodulation versus Output Power

MOTOROLA RF DEVICE DATA TP3006

TYPICAL CHARACTERITICS CW – WIDEBAND

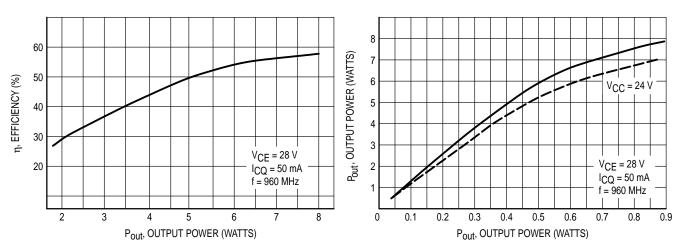
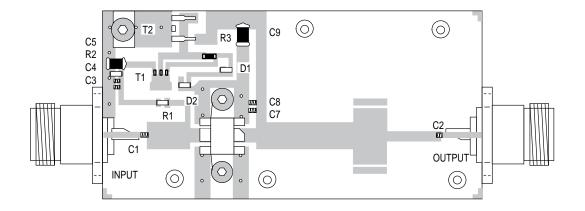
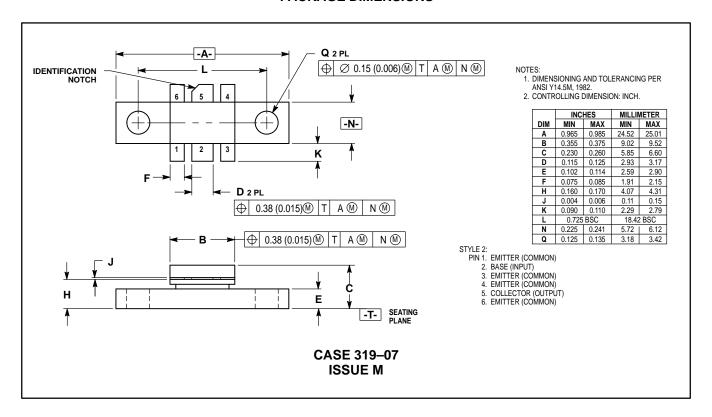



Figure 5. Collector Efficiency versus Output Power


Figure 6. Output Power versus Input Power

EPOXY GLASS 0.8 mm GI 180 PERSTORP DOUBLE SIDE 35 μ m Cu.

Figure 7. 960 MHz Test Circuit Components View

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "a are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

