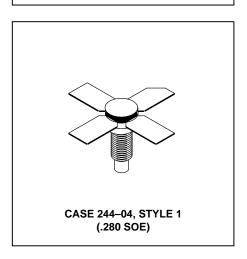
The RF Line **UHF Linear Power Transistor**

... designed for 1.0 watt stages in Band V TV transposer amplifiers. Gold metallized dice and diffused emitter ballast resistors are used to enhance reliability, ruggedness and linearity.


- Band IV and V (470-860 MHz)
- 1.0 W Pref @ -58 dB IMD
- 20 V VCC
- High Gain 11 dB Typ, Class A @ f = 860 MHz
- · Gold Metallization for Reliability

TPV597

1.0 W, 470-860 MHz **UHF LINEAR POWER TRANSISTOR**

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	24	Vdc
Collector-Base Voltage	V _{CBO}	45	Vdc
Emitter–Base Voltage	VEBO	3.5	Vdc
Collector Current — Continuous	IC	1.4	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	19 0.11	Watts W/°C
Operating Junction Temperature	TJ	200	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

	Characteristic	Symbol	Max	Unit
Ī	Thermal Resistance, Junction to Case	$R_{\theta JC}$	9.0	°C/W

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				
Collector–Emitter Breakdown Voltage (I _C = 40 mA, I _B = 0)	V(BR)CEO	24	_	_	Vdc
Collector–Base Breakdown Voltage (I _C = 2.0 mA, I _E = 0)	V _(BR) CBO	45	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 4.0 mA, I _C = 0)	V(BR)EBO	3.5	_	_	Vdc
Emitter-Base Leakage Current (VEB = 2.0 V)	IEBO	_	_	0.5	mA
Collector–Emitter Breakdown Voltage (I _C = 40 mA, R _{BE} = 10 Ω)	V(BR)CER	50	_	_	Vdc
Collector Cutoff Current (V _{CB} = 30 V, I _E = 0)	ICBO	_	_	1.2	mAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 200 mA, V _{CE} = 5.0 V)	hFE	15	_	120	_
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 28 V, I _E = 0, f = 1.0 MHz)	C _{ob}	_	_	7.0	pF
FUNCTIONAL TESTS					
Common–Emitter Amplifier Power Gain (V _{CE} = 20 V, P _{out} = 1.0 W, f = 860 MHz, I _E = 0.44 A)	GPE	10.5	11	_	dB
Load Mismatch ($V_{CE} = 20 \text{ V}$, $P_{out} = 2.0 \text{ W}$, $I_{E} = 0.44 \text{ A}$, $f = 860 \text{ MHz}$, Load VSWR = ∞ :1, All Phase Angles)	Ψ	No Degradation in Output Power			

(continued)

ELECTRICAL CHARACTERISTICS — continued

Characteristic	Symbol	Min	Тур	Max	Unit
FUNCTIONAL TESTS (continued)					
Intermodulation Distortion, 3 Tone (f = 860 MHz, V _{CE} = 20 V, I _E = 0.44 A, P _{ref} = 1.0 W, Vision Carrier = -8.0 dB, Sound Carrier = -7.0 dB, Sideband Signal = -16 dB, Specification TV05001)	IMD ₁	_	-60	-58	dB
Cutoff Frequency (V _{CE} = 20 V, I _E = 0.44 A)	f_{τ}	2.2	2.5	_	GHz
Intermodulation Distortion (IDEM) (f = 860 MHz, V _{CE} = 20 V, I _E = 0.44 A, P _{ref} = 2.0 W, Vision Carrier = -8.0 dB, Sound Carrier = -10 dB, Sideband Signal = -16 dB)	IMD ₂	_	_	-51	dB

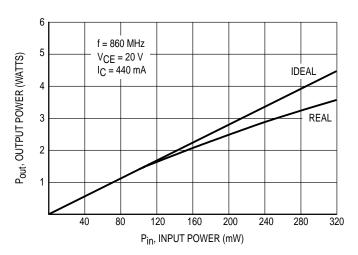


Figure 1. Power Output versus Power Input

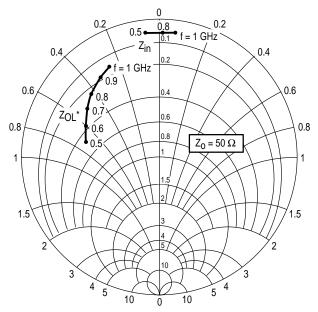


Figure 2. Large Signal Impedances $V_{CE} = 20 \text{ V} - I_{C} = 440 \text{ mA}$

 Z_{OL}^{\star} = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

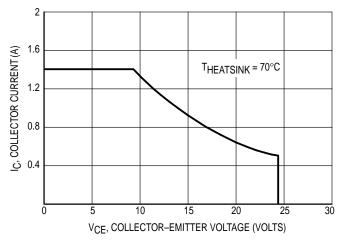


Figure 3. Safe Operating Area

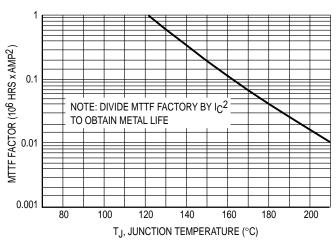
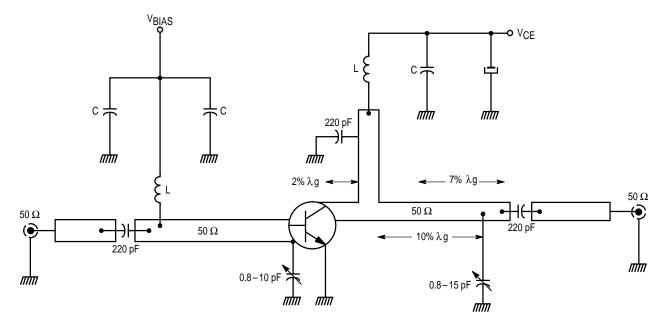



Figure 4. MTTF Factor versus Junction Temperature

L=6 turns ID=1 mm Wire diameter=0.6 mm The lengths are given for f=860 MHz

NOTE: λg is the wave length in the microstrip circuit

Figure 5. 860 MHz Test Circuit

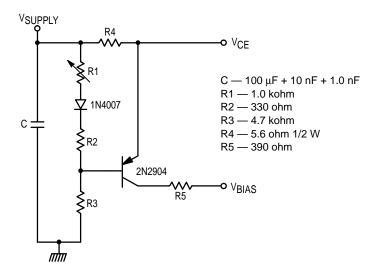
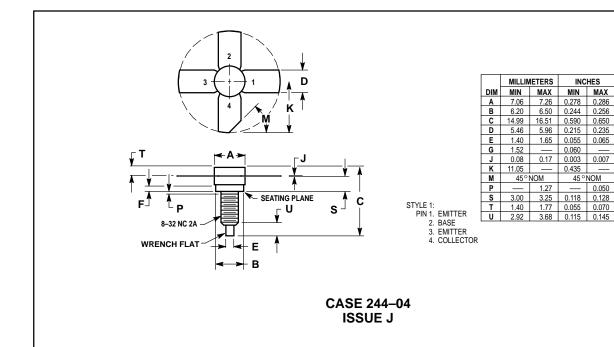



Figure 6. Class A Bias Circuit

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design=NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

