Silicon Switching Diode 1N4150 DO-35 Glass Package
 Applications
 1N4150-1

Used in general purpose applications,where a controlled forward characteristic and fast switching speed are important.

Features

- Sixsigmaquality
- Metallurgically bonded
- BKC's Sigma Bond ${ }^{\text {TM }}$ plating for problem free solderability
- LL-34/35 MELF SMD available
- Full approval to Mil-S-19500/231
- Available up to JANTXV-1 levels
- "S" level screening available to Source Control Drawings

Maximum Ratings		Symbol	1 Value	Unit
Peak Inverse Voltage		PIV	75 (Min.)	Volts
Average Rectified Current		$\mathrm{I}_{\text {Ava }}$	200	mAmps
Continuous Forward Current		$\mathrm{I}_{\text {Fdc }}$	400	mAmps
Peak Surge Current ($\mathrm{t}_{\text {neak }}=1 \mathrm{sec}$.)		$\mathrm{I}_{\text {peak }}$	0.5	Amp
BKC Power Dissipation $\mathrm{T}_{L}=50^{\circ} \mathrm{C}, \mathrm{L}=3 / 8^{\prime \prime}$ from body		$\mathrm{P}_{\text {tot }}$	500	mWatts
Operating Temperature Range		T_{0}	-65 to +200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		$\mathrm{T}_{\text {st }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Electrical Characteristics @ $25^{\circ} \mathrm{C}$	Symbo	Minimum	Maximum	Unit
Forward Voltage Drop @ $I_{F}=1.0 \mathrm{~mA}$ Forward Voltage Drop @ $I_{F}=10 \mathrm{~mA}$ Forward Voltage Drop @ $I_{F}=50 \mathrm{~mA}$ Forward Voltage Drop @ $I_{F}=100 \mathrm{~m}$ Forward Voltage Drop @ $I_{r}=200 \mathrm{~mA}$	V_{F}	0.54	0.62	Volts
	V_{F}	0.66	0.74	Volts
	V_{F}	0.76	0.86	Volts
	$V_{\text {F }}$	0.80	0.92	Volts
	V	0.87	1.0	Volts
Reverse Leakage Current @ $\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$	$I_{\text {r }}$		0.1 (100@ $150{ }^{\circ} \mathrm{C}$)	$\mu \mathrm{A}$
Breakdown Voltage @ Ir $=0.1 \mathrm{~mA}$	PIV	75		Volts
Capacitance @ $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{mHz}$	$\mathrm{C}_{\text {T }}$		2.5	pF
Reverse Recovery time (note 1)Reverse Recovery time (note 2,3)Forward Recovery time (note 4)	${ }_{\text {tr }}$		4.0	nSecs
	$t_{\text {r }}$		6.0	nSecs
	V_{fr}		10	nSecs

Note 1: Per Method 4031-A with $I_{F}=I_{R}=10$ to $200 \mathrm{~mA}, R_{L}=100$ Ohms,recover to 0.1 If.
Note 2: Per Method 4031-A with $I_{F}=I_{R}=200$ to $400 \mathrm{~mA}, R_{L}=100$ Ohms, recover to 0.1 If.
Note 3: Per Method 4031-A with $\mathrm{I}_{\mathrm{F}}=10 \mathrm{microA}, \operatorname{lr}=1.0 \mathrm{~mA}$, recover to 0.1 mA .
Note 4: Per Method 4026 with $I_{F}=200 \mathrm{~mA}, \mathrm{Ir}=1.0 \mathrm{~mA}$, recover to 0.1 mA .
Microsemi

