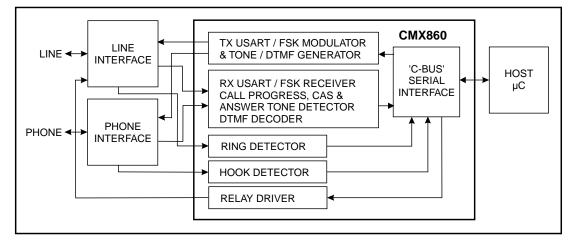


DATA BULLETIN

CMX860 Telephone Signaling Transceiver


ADVANCE INFORMATION

Features

- V.23 1200/75bps FSK Transmit and Receive
- DTMF/Tones Transmit and Receive
- Line & Telephone Complementary Drivers
- Call Progress Decoder
- CAS Tones Detection and Generation
- Simple 'C-BUS' Serial Interface
- Low Power Operation
- 'Powersave' Standby Mode

Applications

- Least Cost Routers
- Vending Machines
- Alarm Systems
- Home Management Systems
- Remote Meter Reading
- Internet Appliance Applications
- Cable TV Set-Top Boxes
- Advanced Feature Phones

The CMX860 is a flexible, low power Telephone Signaling Transceiver IC designed for use in a wide range of line-powered telephone equipment.

The IC combines the functions of a DTMF encoder and decoder, V.23 modulator and demodulator plus call progression circuitry with analog switching between line and phone interfaces. Ring detection, local phone off-hook detection, and a relay for line hook-switch operation are also provided under the control of C-BUS. The ring and hook detectors operate while the remainder of the IC is powersaved, generating an interrupt to wake-up the host μ C when further processing or signaling is required.

All on-chip functions and switching arrangements are controlled via a serial bus (C-BUS). The CMX860 is designed to operate at 2.7V and utilizes MX-COM's low power DTMF decoder and V.23 modem technology. The CMX860 is available in 28-pin SSOP (CMX860D6) and 28-pin SOIC (CMX860D1) packages.

Section

Page

CONTENTS

1.	Block Diagram	4
2.	Signal List	5
3.	External Components	7
	3.1 Ring Detector Interface	
	3.2 Hook Detector Interface	
	3.3 Line Interface	
	3.4 Phone Interface	
4.	General Description	11
	4.1 Tx USART	11
	4.2 FSK Modulator	12
	4.3 Tx Filter and Equalizer	12
	4.4 DTMF/Tones Generator	12
	4.5 Tx Level Control and Output Buffers	12
	4.6 DTMF Decoder and Tone Detectors	12
	4.7 Rx Modem Filter and Equalizer	13
	4.8 FSK Demodulator	13
	4.9 Rx Data Register and USART	
	4.10 Rx Modem Pattern Detectors (and Descrambler)	14
	4.11 Analog Signal Routing	15
	4.12 C-BUS Interface	15
	4.12.1 General Reset Command (no data) (\$01)	16
	4.12.2 General Control Register: 16-bit write-only (\$E0)	17
	4.12.3 Transmit Mode Register: 16-bit write-only (\$E1)	18
	4.12.4 Receive Mode Register: 16-bit write-only (\$E2)	20
	4.12.5 Tx Data Register: 8-bit write-only (\$E3)	21
	4.12.6 Rx Data Register: 8-bit read-only (\$E5)	
	4.12.7 Analog Signal Path Register: 8-bit write-only (\$EC)	
	4.12.8 Status Register: 16-bit read-only (\$E6)	23
	4.12.9 Programming Register (includes generation & detection of CAS): 16-bit write-only (\$E8)	
	4.12.10 Other Registers	

5.	Application		
6.	Performa		
	6.1 Electric	cal Performance	
	6.1.1	Absolute Maximum Ratings	
	6.1.2	Operating Limits	
	6.1.3	Operating Characteristics	
	6.1.4	Timing	
	6.2 Packag	ges	

MX-COM, Inc. reserves the right to change specifications at any time and without notice.

1. Block Diagram

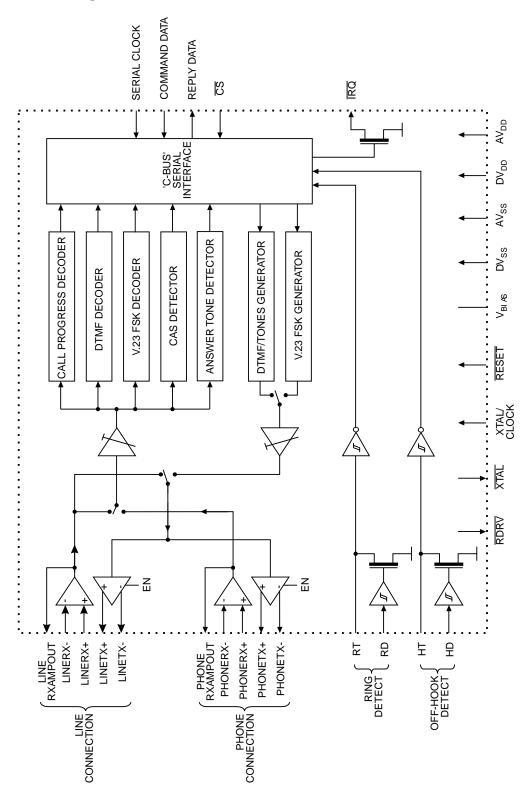


Figure 1: Block Diagram

 ©2000 MX-COM, Inc.
 www.mxcom.com
 tel:
 800 638 5577
 336 744 5050
 fax:
 336 744 5054
 Doc. # 20480222.001

 4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA
 All trademarks and service marks are held by their respective companies.

CMX860 Advance Information

2. Signal List

CMX860 D6, D1	Signal		Description
Pin No.	Name	Туре	
1	XTAL	output	The output of the on-chip Xtal oscillator inverter.
2	XTAL/CLOCK	input	The input to the oscillator inverter from the Xtal circuit or external clock source.
3	RDRV	output	Relay drive output, low resistance pull down to DV_{SS} when active and medium resistance pull up to DV_{DD} when inactive.
4	DV _{SS}	Power	The digital negative supply rail (ground).
5	RD	input	Schmitt trigger input to the Ring signal detector. Connect to DV_{SS} if Ring Detector not used.
6	RT	bi-directional	Open drain output and Schmitt trigger input forming part of the Ring signal detector. Connect to DV_{DD} if Ring Detector not used.
7	RESET	input	An active-low reset pin. Can be used as part of a power- up reset function.
8	LINE RXAMPOUT	output	The output of the Phone Rx Input Amplifier.
9	LINERX-	input	The inverting input to the Phone Rx Input Amplifier.
10	LINERX+	input	The non-inverting input to the Phone Rx Input Amplifier.
11	PHONE RXAMPOUT	output	The output of the Line Rx Input Amplifier.
12	PHONERX-	input	The inverting input to the Line Rx Input Amplifier.
13	PHONERX+	input	The non-inverting input to the Line Rx Input Amplifier.
14	AV _{SS}	Power	The analog negative supply rail (ground).
15	V _{BIAS}	output	Internally generated bias voltage of approximately $AV_{DD}/2$, except when the device is in 'Powersave' mode when V_{BIAS} will discharge to AV_{SS} . Should be decoupled to AV_{SS} by a capacitor mounted close to the device pins.
16	PHONETX-	output	The inverted output of the Phone Tx Output Buffer.
17	PHONETX+	output	The non-inverted output of the Phone Tx Output Buffer.
18	LINETX-	output	The inverted output of the Line Tx Output Buffer.
19	LINETX+	output	The non-inverted output of the Line Tx Output Buffer.
20	AV _{DD}	Power	The analog positive supply rail. Levels and thresholds within the device are proportional to this voltage.
21	HT	bi-directional	Open drain output and Schmitt trigger input forming part of the Hook signal detector. Connect to DV_{DD} if Hook Detector not used.
22	HD	input	Schmitt trigger input to the Hook signal detector. Connect to DV_{SS} if Hook Detector not used.
23	CS	input	The C-BUS chip select input from the μ C.
24	COMMAND DATA	input	The C-BUS serial data input from the μ C.
25	SERIAL CLOCK	input	The C-BUS serial clock input from the μ C.

6

26	REPLY DATA	tri-state	A 3-state C-BUS serial data output to the μ C. This output is high impedance when not sending data to the μ C.
27	IRQ	output	A 'wire-ORable' output for connection to a μ C Interrupt Request input. This output is pulled-down to DV _{SS} when active and is high impedance when inactive. An external pull-up resistor is required i.e. R1 of Figure 2.
28		Power	The digital positive supply rail. Levels and thresholds within the device are proportional to this voltage.

The J5 package is only available as samples.

Table 1: Signal List

CMX860 Advance Information

3. External Components

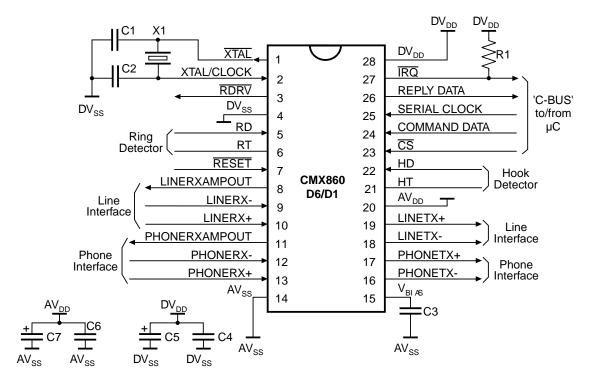


Figure 2: Recommended External Components for a Typical Application

R1	100kΩ	C1, C2	22pF
X1	11.0592MHz	C3, C4	100nF
	or 12.288MHz	C5	10uF

Resistors $\pm 5\%$, capacitors $\pm 20\%$ unless otherwise stated.

Table 2: Recommended External Components for a Typical Application

This device is capable of detecting and decoding small amplitude signals. To achieve this DV_{DD} , AV_{DD} , and V_{BIAS} should be decoupled and the receive path protected from extraneous in-band signals. It is recommended that the printed circuit board be laid out with both AV_{SS} and DV_{SS} ground planes in the CMX860 area, as shown in Figure 3, with provision to make a link between them close to the CMX860. To provide a low impedance connection to ground, the decoupling capacitors (C3-C7) must be mounted as close to the CMX860 as possible and connected directly to their respective ground plane. This will be achieved more easily by using surface mounted capacitors.

 V_{BIAS} is used as an internal reference for detecting and generating the various analog signals. It must be carefully decoupled, to ensure its integrity. Apart from the decoupling capacitor shown (C3), no other loads are allowed. If V_{BIAS} needs to be used to set external analog levels, it must be buffered with a high input impedance buffer. The DV_{SS} connections to the Xtal oscillator capacitors C1 and C2 should also be of low impedance and preferably be part of the DV_{SS} ground plane to ensure reliable start up of the oscillator.

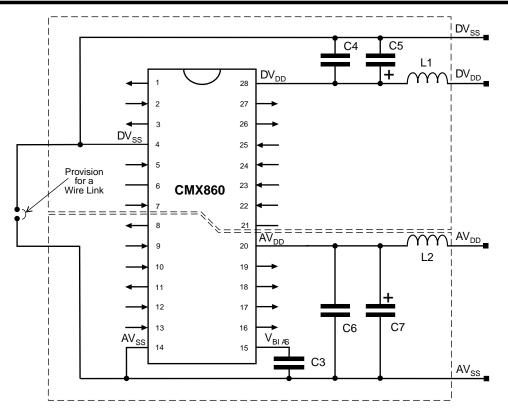


Figure 3: Recommended Power Supply Connections and De-coupling

ANA	LOG		DIGI	TAL
C3, C6	C3, C6 100nF		C4	100nF
C7	10µF		C5	10µF
L2	100nH		L1	100nH

Note: Inductors L1 and L2 can be omitted but this may degrade system performance.

Table 3: Recommended Power Supply Connections and De-coupling

3.1 Ring Detector Interface

Figure 4 shows how the CMX860 may be used to detect the large amplitude ringing signal voltage present on the 2-wire line at the start of an incoming telephone call.

The ring signal is usually applied at the subscriber's exchange as an ac voltage inserted in series with one of the telephone wires and will pass through either C20 and R20 or C21 and R21 to appear at the top end of R22 (point X in Figure 4) in a rectified and attenuated form.

The signal at point X is further attenuated by the potential divider formed by R22 and R23 before being applied to the CMX860 RD input. If the amplitude of the signal appearing at RD is greater than the input threshold (Vt_{HI}) of Schmitt trigger 'A' then the N transistor connected to RT will be turned on, pulling the voltage at RT to DV_{SS} by discharging the external capacitor C22. The output of the Schmitt trigger 'B' will then go high, setting bit 14 (Ring Detect) of the Status Register.

The minimum amplitude ringing signal that is certain to be detected is:

(0.7 + Vt_{HI} x [R20 + R22 + R23] / R23) x 0.707V_{RMS}

where Vt_{HI} is the high-going threshold voltage of the Schmitt trigger A (see Section 6.1).

With R20-22 all 470k Ω as Figure 4, then setting R23 to 68k Ω will guarantee detection of ringing signals of 40Vrms and above for DV_{DD} over the range 3V to 5V.

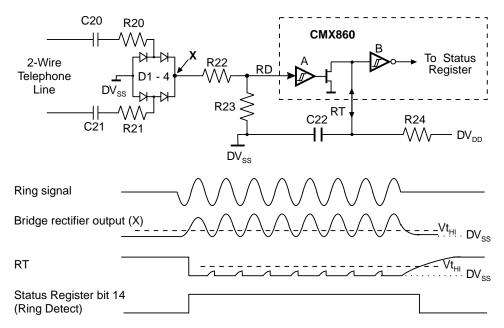


Figure 4: Ring Signal Detector Interface Circuit

R20, 21, 22	470kΩ	C20, 21	0.1µF
R23	See text	C22	0.33µF
R24	470kΩ	D1-4	1N4004

Resistors $\pm 5\%$, capacitors $\pm 20\%$, unless otherwise stated

If the time constant of R24 and C22 is large enough then the voltage on RT will remain below the threshold of the 'B' Schmitt trigger for the duration of a ring cycle.

The time for the voltage on RT to charge from DV_{SS} towards DV_{DD} can be derived from the formula:

$$V_{RT} = DV_{DD} \times [1 - exp(-t/(R24 \times C22))]$$

As the Schmitt trigger high-going input threshold voltage (Vt_{HI}) has a minimum value of 0.56 x DV_{DD}, then the Schmitt trigger B output will remain high for a time of at least 0.821 x R24 x C22 following a pulse at RD.

The values of R24 and C22 given in Figure 4 (470k Ω and 0.33 μ F) give a minimum RT charge time of 100ms, which is adequate for ring frequencies of 10Hz or above.

Note, that the circuit will also respond to a telephone line voltage reversal. If necessary, the μ C can distinguish between a Ring signal and a line voltage reversal by measuring the time that bit 14 of the Status Register (Ring Detect) is high.

If the Ring detect function is not used then pin RD should be connected to DV_{SS} and RT to DV_{DD}.

3.2 Hook Detector Interface

This is identical internally to the Ring Detector interface circuit and similar components could be used externally, with appropriate values, if hook detection is to be performed by detecting a voltage change across the tip and ring lines to the local phone.

3.3 Line Interface

Figure 5: 2-Wire Line Interface Circuit: Application Circuits are TBD

3.4 Phone Interface

Figure 6: 2-Wire Phone Interface Circuit: Application Circuits are TBD

4. General Description

The CMX860 transmit and receive operating modes are independently programmable.

The transmit mode can be set to any one of the following:

- V.23 modem. 1200 or 75bps FSK.
- DTMF transmit.
- Single tone transmit (from a range of modem calling, answer and other tone frequencies)
- User programmed tone or tone pair transmit (programmable frequencies and levels)
- Disabled.

The receive mode can be set to any one of the following:

- V.23 modem. 1200 or 75bps FSK.
- DTMF decode.
- 2100Hz and 2225Hz answer tone detect.
- Call progress signal detect.
- User programmed tone or tone pair detect.
- Disabled.

The CMX860 may also be set into a Powersave mode that disables all circuitry except for the C-BUS interface, the Ring Detector and the Hook Detector.

4.1 Tx USART

A flexible Tx USART is provided. It can be programmed to transmit continuous patterns, Start-Stop characters or Synchronous Data.

In both Synchronous Data and Start-stop modes the data to be transmitted is written by the μ C into the 8-bit C-BUS Tx Data Register from which it is transferred to the Tx Data Buffer.

If Synchronous Data mode has been selected the 8 data bits in the Tx Data Buffer are transmitted serially, b0 being sent first.

In Start-stop mode a single Start bit is transmitted, followed by 5, 6, 7 or 8 data bits from the Tx Data Buffer - b0 first - followed by an optional Parity bit then - normally - one or two Stop bits. The Start, Parity and Stop bits are generated by the USART as determined by the Tx Mode Register settings and are not taken from the Tx Data Register.

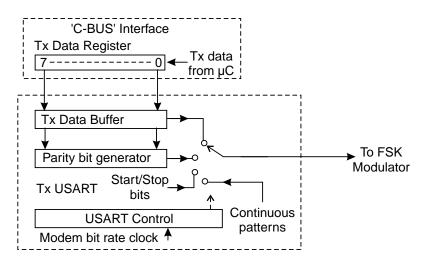


Figure 7: Tx USART

Every time the contents of the C-BUS Tx Data Register are transferred to the Tx Data Buffer the Tx Data Ready flag bit of the Status Register is set to 1 to indicate that a new value should be loaded into the C-BUS Tx Data Register. This flag bit is cleared to 0 when a new value is loaded into the Tx Data Register.

Tx Line Signal:	Start B0 B1	B7 Par'y Stop
Tx Data Ready flag bit:		

Figure 8: Tx USART Function (Start-Stop mode, 8 Data Bits + Parity)

If a new value is not loaded into the Tx Data Register in time for the next Tx Data Register to Tx Data Buffer transfer then the Status Register Tx Data Underflow bit will be set to 1. In this event the contents of the Tx Data Buffer will be re-transmitted if Synchronous Data mode has been selected, or if the Tx modem is in Start-stop mode then a continuous Stop signal (1) will be transmitted until a new value is loaded into the Tx Data Register.

The transmitted bit rates are determined by the XTAL frequency.

4.2 FSK Modulator

Serial data from the USART is fed to the FSK modulator. One of two frequencies is generated according to the current transmit data bit.

4.3 Tx Filter and Equalizer

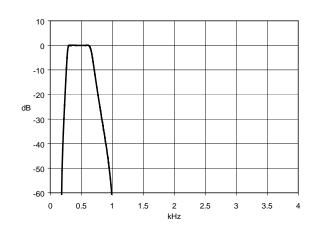
The FSK modulator output signal is fed through the Transmit Filter and Equalizer block that limits the out-ofband signal energy to acceptable limits. When transmitting 1200bps FSK, this block includes a fixed compromise line equalizer that may be enabled or disabled by bit 10 of the General Control Register. The amount of Tx equalization provided compensates for one quarter of the relative amplitude and delay distortion of ETS Test Line 1 over the frequency band used.

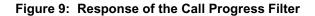
4.4 DTMF/Tones Generator

In DTMF/Tones mode, this block generates DTMF signals or single or dual frequency tones.

4.5 Tx Level Control and Output Buffers

The outputs (if present) of the Transmit Filter and DTMF/Tone Generator are selected then passed through the programmable Tx Level Control and via a switched data path to the Line and Phone Output Buffers. These Tx Output Buffers have symmetrical outputs to provide sufficient line voltage swing at low values of AV_{DD} and to reduce harmonic distortion of the signal. The Line and Phone Output Buffers can be separately enabled by setting bits 2 and 1 respectively of the Analog Signal Path Register.


4.6 DTMF Decoder and Tone Detectors


In Rx Tones Detect mode the received signal, after passing through the Rx Gain Control block, is fed to the DTMF decoder and CAS Tones/Call Progress/Answer Tone detector. The user may select one of four separate operations:

The DTMF decoder detects standard DTMF signals. A valid DTMF signal will set bit 5 of the Status Register to 1 for as long as the signal is detected. The DTMF signal is then decoded and output in bits 0 to 3 of the Status Register.

The programmable tone pair detector includes two separate tone detectors (see Figure 16). The first detector will set bit 6 of the Status Register for as long as a valid signal is detected, the second detector sets bit 7, and bit 10 of the Status Register will be set when both tones are detected. The frequency and bandwidth of each detector can be set in the Programming Register. Without programming, the default values in the Programming Register are set for CAS tone detection.

The Call Progress detector measures the amplitude of the signal at the output of a 275 Hz - 665 Hz bandpass filter and sets bit 10 of the Status Register to 1 when the signal level exceeds the measurement threshold.

The Answer Tone detector measures both amplitude and frequency of the received signal and sets bit 6 or bit 7 respectively of the Status Register when a valid 2225Hz or 2100Hz signal is received.

4.7 Rx Modem Filter and Equalizer

When the receive part of the CMX860 is operating as a modem, the received signal is fed to a bandpass filter to attenuate unwanted signals and to provide fixed compromise line equalization. The line equalizer may be enabled or disabled by bit 10 of the General Control Register and compensates for one quarter of the relative amplitude and delay distortion of ETS Test Line 1.

A typical response of this filter, including the line equalizer is shown in Figure 10. The effect of external components (see Figure 5 and Figure 6) should also be considered in determining the overall response.

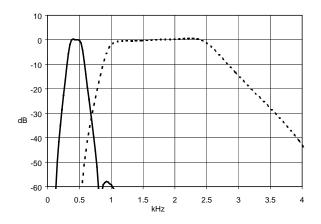


Figure 10: V.23 Rx Filters

The signal level at the output of the Receive Modem Filter and Equalizer is measured in the Modem Energy Detector block, compared to a threshold value, and the result controls bit 10 of the Status Register.

The output of the Receive Modem Filter and Equalizer is also fed to the FSK demodulator.

4.8 FSK Demodulator

The FSK demodulator recognizes individual frequencies as representing received '1' or '0' data bits:

The FSK demodulator produces a serial data bit stream which is fed to the Rx USART block, see Figure 11. This bit stream is also monitored for continuous '1010's and for continuous 1's. The outputs of these pattern detectors control bits 9 and 7 respectively of the Status Register.

4.9 Rx Data Register and USART

The Rx USART can be programmed to treat the received data bit stream as Synchronous data or as Start-Stop characters.

In Synchronous mode the received data bits are all fed into the Rx Data Buffer which is copied into the C-BUS Rx Data Register after every 8 bits.

In Start-stop mode the USART Control logic looks for the start of each character, then feeds only the required number of data bits (not parity) into the Rx Data Buffer. The parity bit (if used) and the presence of a Stop bit are then checked and the data bits in the Rx Data Buffer copied to the C-BUS Rx Data Register.

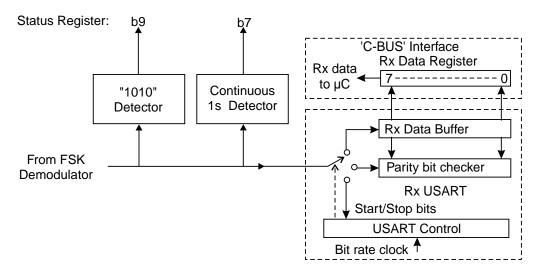


Figure 11: Rx Modem Data Paths

Whenever a new character is copied into the C-BUS Rx Data Register, the Rx Data Ready flag bit of the Status Register is set to 1 to prompt the μ C to read the new data, and, in Start-stop mode, the Even Rx Parity flag bit of the Status Register is updated.

In Start-stop mode, if the Stop bit is missing (received as a '0' instead of a '1') the received character will still be placed into the Rx Data Register and the Rx Data Ready flag bit set, but the Status Register Rx Framing Error bit will also be set to '1' and the USART will re-synchronize onto the next '1' – '0' (Stop – Start) transition. The Rx Framing Error bit will remain set until the next character has been received.

Rx Signal:	Start	B0	B1	I	B7	Par'y Stop

Rx Data Ready flag bit:

Figure 12: Rx USART Function (Start-stop mode, 8 Data Bits + Parity)

If the µC has not read the previous data from the Rx Data Register by the time that new data is copied to it from the Rx Data Buffer then the Rx Data Overflow flag bit of the Status Register will be set to 1.

The Rx Data Ready flag and Rx Data Overflow bits are cleared to 0 when the Rx Data Register is read by the μ C.

4.10 Rx Modem Pattern Detectors (and Descrambler)

The '1010' pattern detector will set bit 9 of the Status Register when 32 bits of alternating 1's and 0's have been received. The continuous 1's detector will set bit 7 of the Status Register when 32 consecutive 1's have been received. Both pattern detectors will hold their 'detect' output for 12 bit times after the end of the detected pattern unless the received bit rate or operating mode is changed, in which case the detectors are reset within 2ms.

4.11 Analog Signal Routing

The routing of signals to and from the Line and Phone interfaces is performed by bits 0 to 3 of the Analog Signal Path Register. Please note that bits 4 to 7 of this register are reserved for future use and should be set to zero for the moment.

4.12 C-BUS Interface

This block provides for the transfer of data and control or status information between the CMX860's internal registers and the μ C over the C-BUS serial bus. Each transaction consists of a single Register Address byte sent from the μ C which may be followed by one or more data byte(s) sent from the μ C to be written into one of the CMX860's Write Only Registers, or one or more byte(s) of data read out from one of the CMX860's Read Only Registers, as illustrated in Figure 13.

Data sent from the μ C on the Command Data line is clocked into the CMX860 on the rising edge of the Serial Clock input. Reply Data sent from the CMX860 to the μ C is valid when the Serial Clock is high. The \overline{CS} line must be held low during a data transfer and kept high between transfers. The C-BUS interface is compatible with most common μ C serial interfaces and may be easily implemented with general-purpose μ C I/O pins controlled by a simple software routine. Figure 21 provides detailed C-BUS timing requirements.

Register	Read/Write	Address
General Reset Command (address only, no data).		\$01
General Control Register	16-bit write only	\$E0
Transmit Mode Register	16-bit write-only	\$E1
Receive Mode Register	16-bit write-only	\$E2
Transmit Data Register	8-bit write only	\$E3
Receive Data Register	8-bit read-only	\$E5
Status Register	16-bit read-only	\$E6
Programming Register	16-bit write-only	\$E8
Analog Signal Path Register	8-bit write-only	\$EC

The following C-BUS addresses and registers are used by the CMX860:

Notes:

- 1. The C-BUS addresses \$E9, \$EA and \$EB are allocated for production testing and should not be accessed in normal operation.
- 2. The C-BUS address \$E4 is allocated for internal use and should not be accessed in normal operation.
- 3. In several registers, there are bit patterns whose function is not specified. These modes should not be accessed in normal operation and no guarantee is given that any use of these bits will be supported in the future.

4.12.1 General Reset Command (no data) (\$01)

This command resets the device and clears all bits of the General Control, Transmit Mode and Receive Mode Registers and bits 15 and 13-0 of the Status Register.

Whenever power is applied to the CMX860 a General Reset command should be sent to the device, after which the General Control Register should be set as required.

CS		μC		
b) One Address and one Data byte from μC CS SERIAL CLOCK TIGES 43210 COMMAND DATA TIGES 43210 Address REPLY DATA H+Z CS SERIAL CLOCK TIGES 43210 CS CS CS COMMAND DATA TIGES 43210 TIGES 43210 COMMAND DATA TIGES 43210 COMMAND DATA TIGES 43210 COMMAND DATA TIGES 43210 Address First (msb) data byte to CMX860 CS SERIAL CLOCK CS CS CS CS CS CS CS CS CS CS	SERIAL CLOCK	Address (01 Hex – Reset)	The SERIAL CLOCK or low at the start and	
CS		l ana Data huta fram uC	= Level not importan	t
SERIAL CLOCK		one Data byte from μC	F	_
COMMAND DATA T 6 5 4 3 2 1 0 T 6 5 4 3 2 1 0 Address Data to CMX860 REPLY DATA H+Z CS CS COMMAND DATA [7 6 5 4 3 2 1 0 T 6 5 4 3 2 1 0 T 6 5 4 3 2 1 0 COMMAND DATA [7 6 5 4 3 2 1 0 T 6 5 4 3 2 1 0 T 6 5 4 3 2 1 0 Address First (msb) data Second (lsb) data BEPLY DATA H+Z COMMAND DATA H+Z COMMAND DATA H+Z d) One Address byte from µC and one Reply byte from CMX860 CS SERIAL CLOCK				
c c c c c c c c				-
c) One Address and 2 Data bytes from µC CS SERIAL CLOCK		Address		_
CS				
SERIAL CLOCK; COMMAND DATA 76543210 76543210 Address First (msb) data Second (lsb) data byte to CMX860 CS	c) One Address and :	2 Data bytes from µC		
COMMAND DATA [7]6]5]4]3[2]1[0] [7]6]5]4]3[2]1[0] [7]6]5]4]3[2]1[0] Address First (msb) data Second (lsb) data byte to CMX860 byte to CMX860 CS	CS	7		
Address First (msb) data Second (lsb) data byte to CMX860 byte to CMX860 cs	SERIAL CLOCK	;;		www.
d) One Address byte from μC and one Reply byte from CMX860 CS SERIAL CLOCK ', COMMAND DATA 716543210 Address REPLY DATA H+z Data from CMX860 CS				
CS			First (msb) data	Second (Isb) data
<u>cs</u>	COMMAND DATA	Address	First (msb) data	Second (Isb) data
	COMMAND DATA REPLY DATA d) One Address byte CS SERIAL CLOCK COMMAND DATA	Address Hi-Z	First (msb) data byte to CMX860	Second (Isb) data
	COMMAND DATA REPLY DATA d) One Address byta CS SERIAL CLOCK COMMAND DATA REPLY DATA e) One Address byta	Address Hi-Z from µC and one Reply byte fr	First (msb) data byte to CMX860	Second (Isb) data
	COMMAND DATA REPLY DATA d) One Address byta CS SERIAL CLOCK COMMAND DATA REPLY DATA e) One Address byta	Address Hi-Z from µC and one Reply byte fr	First (msb) data byte to CMX860	Second (Isb) data
COMMAND DATA 76543210	COMMAND DATA REPLY DATA d) One Address byta CS SERIAL CLOCK COMMAND DATA REPLY DATA e) One Address byta	Address Hi-Z from µC and one Reply byte fr	First (msb) data byte to CMX860	Second (Isb) data byte to CMX860
REPLY DATA Hi-Z 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 <	COMMAND DATA REPLY DATA d) One Address byte CS SERIAL CLOCK COMMAND DATA REPLY DATA e) One Address byte CS SERIAL CLOCK	Address Hi-Z e from μC and one Reply byte fr	First (msb) data byte to CMX860	Second (Isb) data byte to CMX860

4.12.2 General Control Register: 16-bit write-only (\$E0)

This register controls general features of the CMX860 such as the Powersave mode, the IRQ mask bits and the Relay Drive output. It also allows the fixed compromise equalizers in the Tx and Rx signal paths to be disabled if desired, and sets the internal clock dividers to use either a 11.0592 or a 12.288 MHz XTAL frequency. All bits of this register are cleared to 0 by a General Reset command.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	Xtal freq	Hook IRQ Mask	Equ	Rlydrv	Pwr	Rst	Irqnen		IF	RQ Ma	isk Bi	ts	
Reser Bit 15			Re	Reserved, set to 000												
	Xtal Frequency Bit 12			s bit shou	ld be set acco	ording to	b the Xtal b12 = 1 b12 = 0	. 11.(ncy. 0592MI 2880MI							
Hook Mask Bit 11		t IRQ	Thi	s bit affec	ts the operati	on of th	e IRQ bit o	of the S	tatus R	legister a	s des	cribe	d in s	ectio	n 4.1	2.8
Tx an Comp Equal	oromis lizer				s the Tx and be disabled			-	ualizer	in the mo	odem	trans	mit a	nd re	ceiv	9
Bit 10					b10 = b10 =		isable equ nable equ		1200bp	s modem	mod	e)				
Relay Bit 9	Drive		Thi	s bit direc	tly controls th	e RDR'						٦				
) = 0				lled to D∖ lled to D∖						
Powe Bit 8	r-up		osc dev Wh up stal Cha	illator and rice into F en the de bit to 1, a bilize befo anging the	ols the intern I V _{BIAS} supply owersave mo vice is switch pout 20ms sh ore starting to Power-up bi d clears b15 a	. Note t de. ed from ould be use the t to 1 cl	hat the Ge Powersa allowed fo transmitte ears all bit	eneral F ve mod or the e er or re ts of the	Reset c e to no external ceiver. e Trans	ommand rmal oper circuits, i mit Mode	clears ation Xtal c	s this by s scilla	bit, p etting ator, a	uttin I the and V	g the Powe / _{BIAS} t	er-
					Device power	ed up n	ormally		_							
					Powersave m C-BUS interfa			kcept R	ling De	tect, Hool	k Det	ect, I	RDR\	/ and		
Reset Bit 7	t		Setting this bit to 1 resets the CMX860's internal circuitry, clearing all bits of the Transm Receive Mode Registers and b15 and b13-0 of the Status Register. b7 = 1 Internal circuitry in a reset condition. b7 = 0 Normal operation							nit ar	ıd					
IRQ E			Set	ting this b	it to 1 enable	s the IF	RQ output	pin.								
-	(IRQ Output Enable) Bit 6				IRQ pin drive IRQ pin disab) bit of 1	the Status	s Reg	ister	= 1			
IRQ M Bit 5-0		its		ese bits at ction 4.12	fect the opera 8.	ation of	the IRQ b	it of the	Status	Register	as d	escri	bed ir	า		

Table 4: General Control Register

 ©2000 MX-COM, Inc.
 www.mxcom.com
 tel:
 800 638 5577
 336 744 5050
 fax:
 336 744 5054
 Doc. # 20480222.001

 4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA
 All trademarks and service marks are held by their respective companies.
 Output

4.12.3 Transmit Mode Register: 16-bit write-only (\$E1)

This register controls the CMX860 transmit signal type and level. All bits of this register are cleared to 0 by a General Reset command, in Powersave mode, or when b7 (Reset) of the General Control Register is 1.

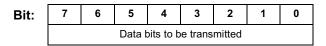
Bit:	15	14	13	12	2	11	10	9	•	8	7	6	5	4	3	:	2	1	0
	Тх	mode	= mode	əm		-	Tx lev	el		set to	o 00	set t	o 00 o	Start- synch				data b h data	its / source
	Tx mo	ode = [DTMF/T	one	s		Tx lev	el		Unı	used	l, set to 00	00				Ton	e sele	ct
	Тx	mode =	= Disab	led							S	Set to 000	0 0000	0000					
Tx Mode Bit 15-12		In	ese 4 l	bits	sele	ct the	e tran	smit	opera	ating	moo	de.							
					b15		o14	-	13	b12									
				_	0		1)	1		V.23 FSI				120		s	
				_	0		1)	0		V.23 FS				75bj	ps		
				-	0		0)	1		DTMF / Transmit		ahled					
					-		-			-				ableu					
Tx Level Bit 11-9		Th	ese 3 l	bits	set t	he ga	ain of	the	Tx Le	evel C	Cont	trol block						_	
2						b11	ł	o10	b9)									
					_	1		1	1				0d						
					_	1		1	0				-1.5						
					_	1	_	0	1				-3.0 -4.5					-	
					_	0		1	1				-4.0						
					0			1					-7.5						
					_	0		0	1				-9.0					-	
						0		0	0				-10.	5dB					
RESERVEI Bit 8-5	D	Re	served	d, se	et to (0000													
Tx Data Fo	ormat	Th	ese tw	o bi	ts se	lect	Syncl	nrond	ous o	r Sta	rt-st	op mode	and t	he add	lition	of a	pari	ty bit	to
(both FSK modes)		tra	nsmitte	ed c	hara	cters	in St	tart-s	stop n	node	•								
Bit 4-3					b4	b	3												
					1	1			hrono										
				_	1	(-			o parity							
				_	0	1						ven parit							
					0	() [;	Start	-stop	moa	e, o	dd parity	bit ad	ded to	data	DIts			
Tx Data an Stop Bits	ıd	ln :	Start-s	top	mod	e the	se th	ree t	oits se	elect	the	number	of Tx o	data ar	nd sto	op bit	ts		
(FSK Start	-stop						b	2	b1	bC)								
mode)							-	1	1	1		8 data bi	ts, 2 s	top bit	s				
Bit 2-0							-	1	1	0		8 data bi		· ·					
								1	0	1		7 data bi				_			
							-	1	0	0		7 data bi				_			
							(1	1		6 data bi				-			
							(1 0	0		6 data bi 5 data bi				-			
									0	0	_	5 data bi		-					
								-	0	1 0			, 1 :						

Tx Data Source	In Syn	chrono	ous mo	ode, (t	04-3 =	11) the	se three bits	select the source of the c	lata fed to the Tx
(FSK	FSK n	nodulat	tor.	-					
Synchronous				L 0	b.4	L 0			
mode)			_	b2	b1	b0			
Bit 2-0			_	1	X	X		from Tx Data Buffer	
			_	0	1	1	Continuous		
				0	1	0	Continuous	Os	
			L	0	0	х	Continuous	alternating 1s and 0s	
DTMF/Tones	If DTN	1F/Ton	es trar	nsmit i	mode l	nas bee	en selected (Tx Mode Register b15-12	= 0001) then b8-5
Mode								signal or a fixed tone or c	one of four
Bit 8-0					-		ansmission.		
	b4 = 0	: Tx fi	ced tor	ne or p	orograi	nmed f	one pair		
	b3	b2	b1	b0	Tor	ne freq	uency (Hz)		
	0	0	0	0	No to	one			
	0	0	0	1	697				
	0	0	1	0	770				
	0	0	1	1	852				
	0	1	0	0	941				
	0	1	0	1	1209				
	0	1	1	0	1336				
	0	1	1	1	1477				
	1	0	0	0	1633				
	1	0	0	1	1300			(Calling tone)	
	1	0	1	0	2100			(Answer tone)	
	1	0	1	1	2225			(Answer tone)	
	1	1	0	0		pair TA		Programmed Tx tone / ton	e pair, see 4.12.9
	1	1	0	1	1	pair TE		"	
	1	1	1	0		pair TC			
	1	1	1	1	CAS	Tones I	by default	Tx tone / tone pair TD whe	en TD programmed
Tx DTMF	b3	b2	b1	b0		w frog	uency (Hz)	High frequency (Hz)	Keypad symbol
Bit 4 = 1	0	0	0	0			941	1633	D
	0	0	0	1	-		597	1209	1
	0	0	1	0	-		597 597	1336	2
	0	0	1	1			597 597	1477	3
	0	1	0	0	_		70	1209	4
	0	1	0	1			70	1336	5
	0	1	1	0			70	1477	6
	0	1	1	1			352	1209	7
	1	0	0	0			352	1336	8
	1	0	0	1			352	1477	9
	1	0	1	0			941	1336	0
	1	0	1	1			941	1209	*
	1	1	0	0			941	1477	#
	1	1	0	1			697	1633	A
	1	1	1	0		7	70	1633	В
	1	1	1	1	1		352	1633	С

Table 5: Transmit Mode Register

4.12.4 Receive Mode Register: 16-bit write-only (\$E2)

This register controls the CMX860 receive signal type and level.

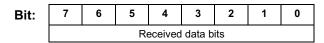

All bits of this register are cleared to 0 by a General Reset command, in Powersave mode or when b7 (Reset) of the General Control Register is 1.

D:4.	45	44	40	40			•	•	•	-			4	•	•		
Bit:	15	14	13	12	1	1 1	0	9	8	7	6	5	4	3	2 No	1 of bits	0
	Rx r	node =	= mod	em		Rx	evel		Eq	Set	to 00	Start	-stop/S	Synch	INO.	parity	anu
	Rx mo	de = T	ones	detect	t	Rx	evel				DTMF	/Tones	/Call P	rogress	select		
	Rx n	node = Disabled Set to 0000 0								0000 0	0000						
Rx Mode		The	se 4	bits s	elect	the re	ceiv	e ope	rating	mode.							
Bit 15-12		b1	5 k	o14	b13	b12	2										
		0		1	0	1		V.23 FSK			1200bps						
		0		1	0	0) V		7.23 FSK 75bps								
		0	0 0 1 DTMF, Programmed tone pair, Answer To detect						wer To	ne, Ca	all Prog	gress					
		0		0	0	0					Re	eceive	. disat	led			
Rx Level		The	ese three bits set the gain of the Rx Gain Control block.														
Bit 11-9						-											1
				b1	1	b10 1	b 9					0dE					
				1		1	0					-1.5d					
				1		0	1					-3.0d					
				1		0			-4.5dB								
				0		1 1						-6.0d	В				
			0		1	0		-7.5dB									
				0		0	1		-9.0dB								
				0		0	0					-10.5	dΒ				
Reserved Bit 8-6		Res	erveo	d, set	to 00	00											
Rx USART		These three bits select the Rx USART operating mode.															
Setting (bo FSK mode				Γ	b5	b4		b3									
Bit 5-3	-,			-	1	1		1	Rx Sy	nchroi	nous m	ode					
				-	1	1		0	Rx Sta	art-sto	p mode)					
					0	х		х	Rx US	ART f	functior	n disab	led				
Rx Data Bi parity (FSF				top n chara			thre	e bits	select	the n	umber	of data	ı bits (plus ar	ny pari	ty bit)	in each
Start-stop	mode)			[b2	b1		0 0									
Bit 2-0					1	1	-		8 data	bits +	parity					_	
					1	1	-		8 data		·····						
					1	0			7 data		parity						
					1	0			7 data								
					0	1		1	6 data	bits +	parity						
					0	1		0	6 data	bits						_	
					0	0	-		5 data		parity					_	
	1			0	0		0	5 data	bits								

Rx Data bits and parity (FSK Synchronous mode) Bit 2-0	These bits are i	These bits are ignored in Synchronous mode.								
Tones Detect mode Bit 2-0	In Tones Detec Bits 2-0 select t		•		egister b15-12 = 0001) b8-3 should be set to 000000.					
		b2	b1	b0						
		1	0	0	Programmable Tone Pair Detect					
		0	1	1	Call Progress Detect					
		0	1	0	2100, 2225Hz Answer Tone Detect					
		0	0	1	DTMF Decode					
		0	0	0	Disabled					

Table 6: Receive Mode Register

4.12.5 Tx Data Register: 8-bit write-only (\$E3)



In Synchronous Tx data mode this register contains the next 8 data bits to be transmitted. Bit 0 is transmitted first.

In Tx Start-stop mode the specified number of data bits will be transmitted from this register (b0 first). A Start bit, a Parity bit (if required) and Stop bit(s) will be added automatically.

This register should only be written to when the Tx Data Ready bit of the Status Register is 1.

4.12.6 Rx Data Register: 8-bit read-only (\$E5)

In unformatted Rx data mode this register contains 8 received data bits, b0 of the register holding the earliest received bit, b7 the latest.

In Rx Start-stop data mode this register contains the specified number of data bits from a received character, b0 holding the first received bit.

4.12.7 Analog Signal Path Register: 8-bit write-only (\$EC)

Bit:	7	6	5	4	3	2	1	0
	0	0	0	0	Line to Drivers Control	Line Driver Enable	Phone Driver Enable	Input Selector Control

Reserved Bit 7-4	Reserved, se	t to 0000							
Line to Drivers Control Bit 3	This bit controls the switching of the signal path into the output drivers.b3 = 1Output drivers take their signal from the output of the Line input op-ampb3 = 0Output drivers take their signal from the on-chip DTMF/TONES/FSK Generator								
Line Driver Enable Bit 2	This bit enab	b2 = 1 b2 = 0	les the complementary Line Driver. Line Driver enabled Line Driver disabled & high impedance						
Phone Driver Enable Bit 1	This bit enab	les or disab b1 = 1 b1 = 0	les the complementary Phone Driver. Phone Driver enabled Phone Driver disabled & high impedance						
Input Selector Control Bit 0	This bit selects between the Line and Phone as inputs to the CMX860's decodersb0 = 1Output of Line input op-amp to decoders/detectorsB0 = 0Output of Phone input op-amp to decoders/detectors								
	Note: Both op-amps remain powered up even when not selected (unless device is powersaved).								

Table 7: Analog Signal Path Register

4.12.8 Status Register: 16-bit read-only (\$E6)

Bits 15 and 13-0 of this register are cleared to 0 by a General Reset command, in Powersave mode, or when b7 (Reset) of the General Control Register is 1.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IRQ	RD	PF	See below for uses of these bits												

The meanings of the Status Register bits 12-0 depend on whether the receive circuitry is in Modem or Tones Detect mode.

	Statu	s Register bits:						
	Rx Modem modes	Rx Tones Detect modes	** IRQ Mask bit					
b15	IF	RQ						
b14	Set to 1 on	Ring Detect	b5					
b13	Programming Fla	g bit. See 1.5.12.9	b4					
b12	Set to 1 on T Cleared by write t	b3						
b11	o11 Set to 1 on Tx data underflow. Cleared by write to Tx Data Register							
b10	1 when energy is detected in Rx modem signal band	1 when energy is detected in Call Progress band or when both programmable tones are detected	b2					
b9	1 when '1010' pattern is detected in FSK modes	0	b1					
b8	Set to 1 on	B11						
b7	1 when continuous 1's pattern detected in FSK modes	1 when 2100Hz answer tone or the second programmable tone is detected	b1					
b6	Set to 1 on Rx data ready. Cleared by read from Rx Data Register	1 when 2225Hz answer tone or the first programmable tone is detected	b0					
b5	Set to 1 on Rx data overflow. Cleared by read from Rx Data Register	1 when DTMF code is detected	b0					
b4	Set to 1 on Rx framing error	0	-					
b3	Set to 1 on even Rx parity	Rx DTMF code b3, see table	-					
b2	0	Rx DTMF code b2	-					
b1	0	Rx DTMF code b1	-					
b0	FSK frequency demodulator output	Rx DTMF code b0	-					

Table 8: Status Register

Notes: ** This column shows the corresponding IRQ Mask bits in the General Control Register. A 0 to 1 transition on any of the Status Register bits 14-5 will cause the IRQ bit b15 to be set to 1 if the corresponding IRQ Mask bit is 1. The IRQ bit is cleared by a read of the Status Register or a General Reset command or by setting b7 or b8 of the General Control Register to 1. The operation of the data demodulator and pattern detector circuits within the CMX860 does not depend on the state of the Rx energy detect function.

 ©2000 MX-COM, Inc.
 www.mxcom.com
 tel:
 800 638 5577
 336 744 5050
 fax:
 336 744 5054
 Doc. # 20480222.001

 4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA
 All trademarks and service marks are held by their respective companies.
 Output

Rx signal		Hold time
Status Register bit 5,6,7,8,9 or 10	Note 3	
Status Register bit 15 (IRQ)	Note 1	
IRQ output	Note 2	
Notes: 1. IRQ will go high only if appropriate	IRQ Mask bit in General Control Re	aister is set.

- In IRQ will go high only if appropriate IRQ Mask bit in General Control Register is set. <u>The</u> IRQ bit is cleared by a read of the Status Register.
 - 2. IRQ output will go low when IRQ bit high if IRQEN bit of General Control Register is set
 - 3. In Rx Modem modes Status Register bits 5 and 6 are set by a Rx Data Ready or Rx Data Underflow event and cleared by a read of the Rx Data Register

Figure 14: Operation of Status Register bits 5

The \overline{IRQ} output pin will be pulled low (to DV_{SS}) when the IRQ bit of the Status Register and the $\overline{IRQ}EN$ bit (b6) of the General Control Register are both 1.

Changes to Status Register bits caused by a change of Tx or Rx operating mode can take up to $150\mu s$ to take effect.

In Powersave mode or when the Reset bit (b7) of the General Control Register is 1, the Ring Detect bit (b14) and the Hook Detect bit (b8) continue to operate but all other bits will be 0.

4.12.8.1 Rx Modem Mode:

In Rx Modem mode b0 will show the output of the frequency demodulator, updated at 8 times the nominal data rate.

4.12.8.2 Rx Tones Detect Mode:

	A	В
Rx DTMF bursts		
Status Register bit 5		
Status Register bits 3-0	Code for burst A	Code for burst B
Status Register bit 15 (IRQ)	Note 1	
IRQ output	Note 2	

Notes: 1. IRQ will go high only if the IRQ Mask bit b0 in the General Control Register is set. The IRQ bit is cleared by a read of the Status Register.

2. IRQ output will go low when IRQ bit high if IRQEN bit of General Control Register is set

b3	b2	b1	b0	Low frequency (Hz)	High frequency (Hz)	Keypad symbol
0	0	0	0	941	1633	D
0	0	0	1	697	1209	1
0	0	1	0	697	1336	2
0	0	1	1	697	1477	3
0	1	0	0	770	1209	4
0	1	0	1	770	1336	5
0	1	1	0	770	1477	6
0	1	1	1	852	1209	7
1	0	0	0	852	1336	8
1	0	0	1	852	1477	9
1	0	1	0	941	1336	0
1	0	1	1	941	1209	*
1	1	0	0	941	1477	#
1	1	0	1	697	1633	А
1	1	1	0	770	1633	В
1	1	1	1	852	1633	С

Figure 15: Operation of Status Register for DTMF Rx

Table 9:	Received DTMF	Code: b3-0 of Status Register	
----------	---------------	-------------------------------	--

4.12.9 Programming Register (includes generation & detection of CAS): 16-bit write-only (\$E8)

This register is used to program the transmit and receive programmed tone pairs by writing appropriate values to RAM locations within the CMX860. Note that these RAM locations are cleared by Powersave or Reset.

The Programming Register should only be written to when the Programming Flag bit (b13) of the Status Register is 1. The act of writing to the Programming Register clears the Programming Flag bit. When the programming action has been completed (normally within 150µs) the CMX860 will set the bit back to 1.

When programming Transmit or Receive Tone Pairs, do not change the Transmit or Receive Mode Registers until programming is complete and the Programming Flag bit has returned to 1.

4.12.9.1 Transmit Tone Pair Programming (e.g. CAS generation)

4 transmit tone pairs (TA to TD) can be programmed.

The frequency (max 3.4kHz) and level must be entered for each tone to be used.

Single tones are programmed by setting both level and frequency values to zero for one of the pair.

Programming is done by writing a sequence of up to seventeen 16-bit words to the Programming Register.

The first word should be 32768 (8000 hex), the following 16-bit words set the frequencies and levels and are in the range 0 to 16383 (0-3FFF hex)

Word	Tone Pair	Value written	Default Setting	
1		32768		
2	TA	Tone 1 frequency		
3	TA	Tone 1 level		
4	TA	Tone 2 frequency		
5	TA	Tone 2 level		
6	ТВ	Tone 1 frequency		
7	ТВ	Tone 1 level		
14	TD	Tone 1 frequency	2130 Hz	NB. Tone Pair TD is configured as
15	TD	Tone 1 level	-20 dBm	CAS Tones by default, but can be
16	TD	Tone 2 frequency	2750 Hz	re-programmed if required.
17	TD	Tone 2 level	-20 dBm	

The Frequency values to be entered are calculated from the formula:

Value to be entered = desired frequency (Hz) * 3.414

i.e. for 1kHz the value to be entered is 3414 (or 0D56 in Hex).

The Level values to be entered are calculated from the formula:

Value to be entered = desired V_{RMS} * 93780 / AV_{DD}

i.e. for $0.5V_{RMS}$ at AV_{DD} = 3.0V, the value to be entered is 15630 (3D0E in Hex)

Note that allowance should be made for the transmit signal filtering in the CMX860 which attenuates the output signal for frequencies above 2kHz by 0.25dB at 2.5kHz, by 1dB at 3kHz and by 2.2dB at 3.4kHz.

4.12.9.2 Receive Tone Pair Programming (e.g. CAS detection)

The programmable tone pair detector is implemented as shown in Figure 16. The filters are 4th order IIR sections. The frequency detectors measure the time taken for a programmable number of complete input signal cycles and compare this time against programmable upper and lower limits.

NB. If this register is not programmed, the detector will be configured to operate in its default mode, which is for the detection of CAS tones (2130 Hz \pm 20 Hz and 2750 Hz \pm 30 Hz).

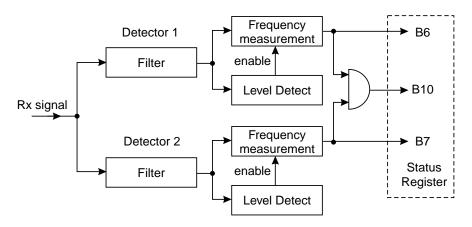


Figure 16: Programmable Tone Detectors

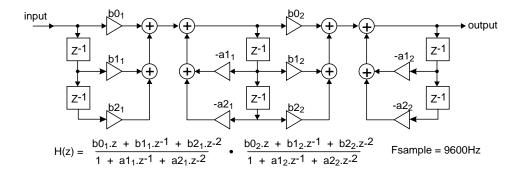


Figure 17: Filter Implementation

Programming is done by writing a sequence of twenty-seven 16-bit words to the Programming Register. The first word should be 32769 (8001 hex), the following twenty-six 16-bit words set the frequencies and levels and are in the range 0 to 32767 (0000-7FFF hex).

Word	Value written
1	32769
2	Filter #1 coefficient b21
3	Filter #1 coefficient b11
4	Filter #1 coefficient b01
5	Filter #1 coefficient a2 ₁
6	Filter #1 coefficient a11
7	Filter #1 coefficient b2 ₂
8	Filter #1 coefficient b1 ₂
9	Filter #1 coefficient b0 ₂
10	Filter #1 coefficient a2 ₂
11	Filter #1 coefficient a1 ₂
12	Freq measurement #1 ncycles
13	Freq measurement #1 mintime
14	Freq measurement #1 maxtime

Word	Value written
15	Filter #2 coefficient b21
16	Filter #2 coefficient b11
17	Filter #2 coefficient b01
18	Filter #2 coefficient a21
19	Filter #2 coefficient a11
20	Filter #2 coefficient b22
21	Filter #2 coefficient b12
22	Filter #2 coefficient b02
23	Filter #2 coefficient a2 ₂
24	Filter #2 coefficient a1 ₂
25	Freq measurement #2 ncycles
26	Freq measurement #2 mintime
27	Freq measurement #2 maxtime

The coefficients are entered as 15-bit signed (two's complement) integer values (the most significant bit of the 16-bit word entered should be zero) calculated as 8192 * coefficient value from the user's filter design program (i.e. this allows for filter design values of -1.9999 to +1.9999).

The design of the IIR filters should make allowance for the fixed receive signal filtering in the CMX860 which has a low pass characteristic above 1.5kHz of 0.4dB at 2kHz, 1.2dB at 2.5kHz, 2.6dB at 3kHz and 4.1dB at 3.4kHz.

'ncycles' is the number of signal cycles for the frequency measurement.

'mintime' is the smallest acceptable time for ncycles of the input signal expressed as the number of 9.6kHz timer clocks. i.e. 'mintime' = 9600 * ncycles / high frequency limit

'maxtime' is the highest acceptable time for ncycles of the input signal expressed as the number of 9.6kHz timer clocks. i.e. 'maxtime' = 9600 * ncycles / low frequency limit

The level detectors include hysteresis. The threshold levels - measured at a 2-wire line interface with unity gain filters, using the typical line interface circuits described in Sections 3.3 and 3.4, 1.0 dB line coupling transformer loss and with the Rx Gain Control block set to 0dB - are nominally:

'Off' to 'On'	-44.5dBm
'On' to 'Off'	-47.0dBm

Note that if any changes are made to the programmed values while the CMX860 is running in Programmed Tone Detect mode they will not take effect until the CMX860 is next switched into Programmed Tone Detect mode.

4.12.10 Other Registers

C-BUS addresses \$E4, \$E9, \$EA and \$EB are reserved and should not be accessed.

5. Application Notes

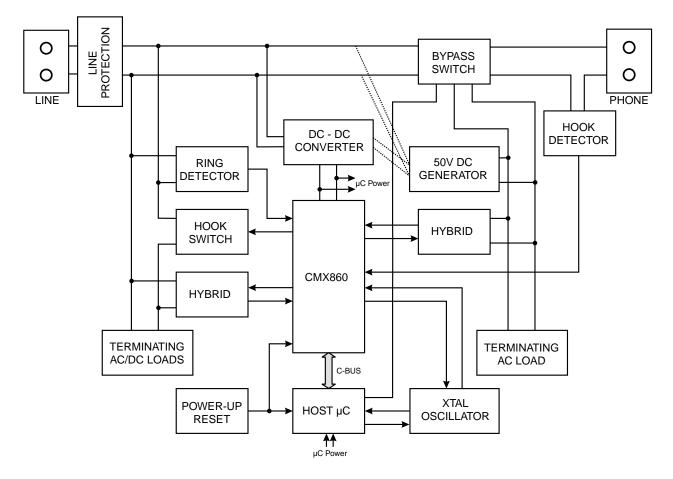


Figure 18: Typical Block Diagram for a Least Cost Router Application

6. Performance Specification

6.1 Electrical Performance

6.1.1 Absolute Maximum Ratings

Exceeding these maximum ratings can result in damage to the device.

	Min.	Max.	Units
Supply (AV _{DD} - AV _{SS}) or (DV _{DD} - DV _{SS})	-0.3	7.0	V
Voltage on any pin to AV_{SS} or DV_{SS}	-0.3	V _{DD} + 0.3	V
Voltage between AV_{SS} or DV_{SS}		±50	mV
Voltage between AV _{DD} or DV _{DD}		±300	MV
Current into or out of AV _{SS} , DV_{SS} , AV_{DD} or DV_{DD} pins	-50	+50	mA
Current into RDRV pin (RDRV pin low)		+50	mA
Current into or out of any other pin	-20	+20	mA
D6 Package			
Total Allowable Power Dissipation at T _{AMB} = 25°C		550	mW
Derating above 25°C		9	mW/°C above 25°C
Storage Temperature	-55	+125	°C
Operating Temperature	-40	+85	°C
D1 Package			
Total Allowable Power Dissipation at T _{AMB} = 25°C		800	mW
Derating above 25°C		13	mW/°C above 25°C
Storage Temperature	-55	+125	°C
Operating Temperature	-40	+85	°C

6.1.2 Operating Limits

Correct operation of the device outside these limits is not implied.

	Notes	Min.	Max.	Units
Supply (AV _{DD} - AV _{SS}) or (DV _{DD} - DV _{SS})		2.7	5.5	V
Operating Temperature		-40	+85	°C

Details in this section represent design target values and are not currently guaranteed.

For the following conditions unless otherwise specified:

 V_{DD} = 2.7V to 5.5V at T_{AMB} = -40 to +85°C, Xtal Frequency = 11.0592 or 12.288MHz \pm 0.01% (100ppm) 0dBm corresponds to 775mV_{RMS}.

	Notes	Min.	Тур.	Max.	Units
DC Parameters					
I _{DD} (Powersave mode)	1, 2	-	-	TBD	μA
(Reset but not powersave, $V_{DD} = 3.0V$)	1, 3	-	2.0	TBD	mA
(Reset but not powersave, $V_{DD} = 5.0V$)	1, 3	-	3.5	TBD	mA
(Running, $V_{DD} = 3.0V$)	1	-	3.5	TBD	mA
(Running, $V_{DD} = 5.0V$)	1	-	6.5	TBD	mA
Logic '1' Input Level	4	70%	-	-	DV_DD
Logic '0' Input Level	4	-	-	30%	DV_DD
Logic Input Leakage Current ($V_{IN} = 0$ to DV_{DD}), (excluding XTAL/CLOCK input)		-1.0	-	+1.0	μA
Output Logic '1' Level (I _{OH} = 2 mA)		80%	-	-	DV_DD
Output Logic '0' Level (I _{OL} = -3 mA)		-	-	0.4	V
\overline{IRQ} output 'Off' State Current (V _{OUT} = DV _{DD})		-	-	1.0	μA
Schmitt triggers input high-going threshold (Vt _{HI}) (see Figure 19)		0.56DV _{DD}	-	0.56DV _{DD} + 0.6V	V
Schmitt triggers input low-going threshold (Vt_{LO}) (see Figure 19)		0.44DV _{DD} - 0.6V	-	$0.44V_{DD}$	V
RDRV 'ON' resistance to DV _{SS} (DV _{DD} = 3.0V)		-	-	TBD	Ω
RDRV 'OFF' resistance to DV_{DD} (DV_{DD} = 3.0V)		-	-	TBD	Ω
XTAL/CLOCK Input (timings for an external clock input)					
'High' Pulse Width		30	-	-	ns
'Low' Pulse Width		30	-	-	ns
Transmit V.23 FSK Mode					
Baud rate	5	-	1200/75	-	Baud
Mark (logical 1) frequency, 1200 baud		1298	1300	1302	Hz
Space (logical 0) frequency, 1200 baud		2097	2100	2103	Hz
Mark (logical 1) frequency, 75 baud		389	390	391	Hz
Space (logical 0) frequency, 75 baud		449	450	451	Hz
DTMF/Single Tone Transmit					
Tone frequency accuracy		-0.2	-	+0.2	%
Distortion	6	-	1.0	2.0	%
Transmit Output Level					
Modem and Single Tone modes	6	-4.0	-3.0	-2.0	dBm
DTMF mode, Low Group tones	6	-2.0	-1.0	0.0	dBm
DTMF: level of High Group tones with respect to Low Group	6	+1.0	+2.0	+3.0	dB
Tx output buffer gain control accuracy	6	-0.25	-	+0.25	dB

 ©2000 MX-COM, Inc.
 www.mxcom.com
 tel:
 800 638 5577
 336 744 5050
 fax:
 336 744 5054
 Doc. # 20480222.001

 4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA
 All trademarks and service marks are held by their respective companies.
 Output

	Notes	Min.	Тур.	Max.	Units
Receive V.23 FSK Mode					
1200 baud					
Acceptable baud rate		1188	1200	1212	Baud
Mark (logical 1) frequency		1280	1300	1320	Hz
Space (logical 0) frequency		2080	2100	2120	Hz
75 baud					
Acceptable baud rate		74	75	76	Baud
Mark (logical 1) frequency		382	390	398	Hz
Space (logical 0) frequency		442	450	458	Hz
Rx Modem Signal					
Signal level	10	-45	-	-9	dBm
Signal to Noise Ratio (noise flat 300-3400Hz)		20	-	-	dB
Rx Modem Continuous 1s, 0s and 1010 Pattern Detectors					
Turn on time		32	-	40	bit-times
Turn off time		12	-	20	bit-times
Rx Modem Energy Detector					
Detect threshold ('Off' to 'On)	10,11	-	-	-43.0	dBm
Undetect threshold ('On' to 'Off')	10,11	-48.0	-	-	dBm
Hysteresis	10,11	2.0	-	-	dB
Detect ('Off' to 'On') response time					
1200 baud FSK mode	10,11	8.0	-	30.0	ms
75 baud FSK mode	10,11	16.0	-	60.0	ms
Undetect ('On' to 'Off') response time					
1200 baud FSK mode	10,11	10.0	-	40.0	ms
75 baud FSK mode	10,11	20.0	-	80.0	ms
Rx Answer Tone Detectors					
Detect threshold ('Off' to 'On)	10,8	-	-	-43.0	dBm
Undetect threshold ('On' to 'Off')	10,8	-48.0	-	-	dBm
Hysteresis	10,8	2.0	-	-	dB
Detect ('Off' to 'On') response time	10,8	30.0	33.0	45.0	ms
Undetect ('On' to 'Off') response time	10,8	7.0	18.0	25.0	ms
2100Hz detector					
'Will detect' frequency		2050	-	2160	Hz
'Will not detect' frequency		-	-	2000	Hz
2225Hz detector					
'Will detect' frequency		2160	-	2285	Hz
'Will not detect' frequency		2335	-	-	Hz

	Notes	Min.	Тур.	Max.	Units
Rx Call Progress Energy Detector					
Bandwidth (-3dB points) See Figure 9		275	-	665	Hz
Detect threshold ('Off' to 'On)	10,9	-	-	-37.0	dBm
Undetect threshold ('On' to 'Off')	10,9	-42.0	-	-	dBm
Hysteresis	10,9	2.0	-	-	dB
Detect ('Off' to 'On') response time	10,9	30.0	36.0	45.0	ms
Undetect ('On' to 'Off') response time	10,9	6.0	8.0	50.0	ms
DTMF Decoder					
Valid input signal levels (each tone of composite signal)	10	-30.0	-	0.0	dBm
Not decode level (either tone of composite signal)	10	-	-	-36.0	dBm
Twist = High Tone/Low Tone		-10.0	-	6.0	dB
Frequency Detect Bandwidth		±1.8	-	±3.5	%
Max level of low frequency noise (i.e. dial tone)					
Interfering signal frequency <= 550Hz	12	-	-	0.0	dB
Interfering signal frequency <= 450Hz	12	-	-	10.0	dB
Interfering signal frequency <= 200Hz	12	-	-	20.0	dB
Max. noise level with respect to the signal	12,13	-	-	-10.0	dB
DTMF detect response time		-	-	40.0	ms
DTMF de-response time		-	-	30.0	ms
Status Register b5 high time		14.0	-	-	ms
'Will Detect' DTMF signal duration		40.0	-	-	ms
'Will Not Detect' DTMF signal duration		-	25.0	-	ms
Pause length detected		30.0	-	-	ms
Pause length ignored		-	-	15.0	ms
Receive Input Amplifier					
Input impedance (at 100Hz)		10.0			MΩ
Open loop gain (at 100Hz)			10000		V/V
Rx Gain Control Block accuracy		-0.25		+0.25	dB

Operating Characteristics Notes

- 1. At 25°C, not including any current drawn from the CMX860 pins by external circuitry other than X1, C1 and C2.
- 2. All logic inputs at DV_{SS} except for RT and \overline{CS} inputs, which are at DV_{DD} .
- 3. General Mode Register b8 and b7 both set to 1.
- 4. Excluding RD, RT, HD and HT pins.
- 5. Tx signal % baud or bit rate accuracy is the same as XTAL/CLOCK % frequency accuracy.
- Measured between LINETX+ and LINETX- or PHONETX+ and PHONETX- pins with Tx Level Control gain set to 0dB, 1k2Ω load between the TX+ and TX- pins, at AV_{DD} = 3.0V (levels are proportional to AV_{DD} - see Sections 3.3 and 3.4). Level measurements for all modem modes are performed with random transmitted data and without any guard tone. 0dBm = 775mV_{RMS}.
- Measured on the 2-wire line using the line interface circuits described in Sections 3.3 and 3.4 with the Tx line signal level set to -10dBm for FSK or single tones, -6dBm and -8dBm for DTMF tones. Excludes any distortion due to external components required for line coupling.

- 8. Typical' value refers to 2100Hz or 2225Hz signal switched between off and -33dBm. Times measured with respect to the received line signal.
- 9. "Typical' values refers to 400Hz signal switched between off and -33dBm
- 10. Rx 2-wire line signal level assuming 1dB loss in line coupling components with Rx Gain Control block set to 0dB. (Reference Sections 3.3 and 3.4.)
- 11. Thresholds and times measured with continuous binary '1' for all FSK modes. Fixed compromise line equalizer enabled. Signal switched between off and -33dBm
- 12. Referenced to DTMF tone of lower amplitude.
- 13. Flat Gaussian Noise in 300-3400Hz band.

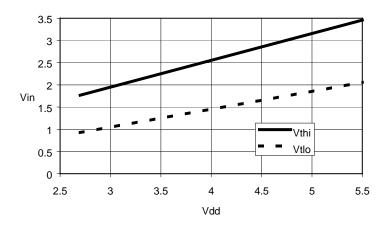


Figure 19: Typical Schmitt Trigger Input Voltage Thresholds vs. V_{DD}

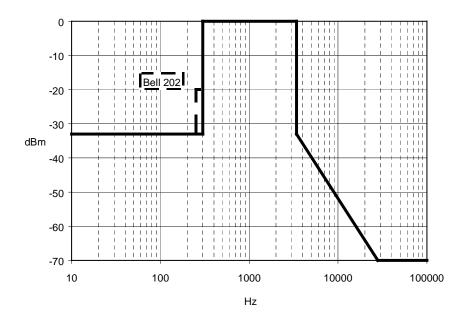


Figure 20: Maximum Out of Band Tx Line Energy Limits (see Operating Characteristics Notes -7)

6.1.4 Timing

C-BUS T	C-BUS Timings (See Figure 21)			Тур.	Max.	Units
t _{CSE}	CS -Enable to Clock-High time		100	-	-	ns
t _{CSH}	Last Clock-High to \overline{CS} -High time		100	-	-	ns
t _{LOZ}	Clock-Low to Reply Output enable time		0.0	-	-	ns
t _{HIZ}	$\overline{\text{CS}}$ -High to Reply Output 3-state time		-	-	1.0	μs
t _{CSOFF}	CS -High Time between transactions		1.0	-	-	μs
t _{NXT}	Inter-Byte Time		200	-	-	ns
t _{ск}	Clock-Cycle time		200	-	-	ns
t _{CH}	Serial Clock-High time		100	-	-	ns
t _{CL}	Serial Clock-Low time		100	-	-	ns
t _{CDS}	Command Data Set-Up time		75.0	-	-	ns
t _{CDH}	Command Data Hold time		25.0	-	-	ns
t _{RDS}	Reply Data Set-Up time		50.0	-	-	ns
t _{RDH}	Reply Data Hold time		0.0	-	-	ns

Maximum 30pF load on each C-BUS interface line.

Note: These timings are for the latest version of the C-BUS as embodied in the CMX860, and allow faster transfers than the original C-BUS timings given in MX-COM Publication Doc. # 20480060.001.

6.2 Packages

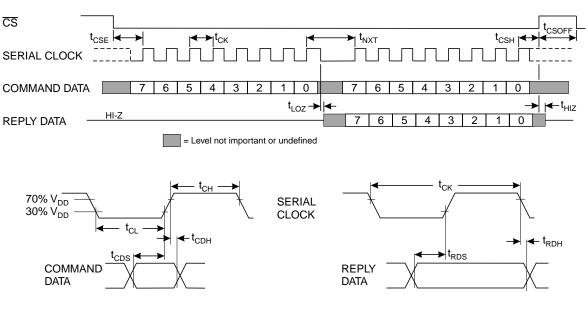
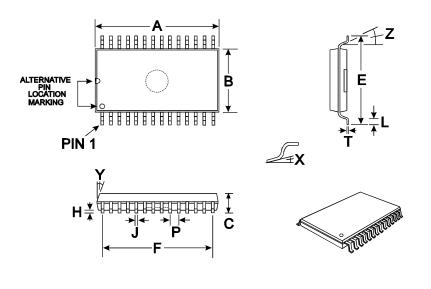



Figure 21: C-BUS Timing

I	DIM.	MIN.	TYP.	MAX.
* *	ABCEFHJLPTXY Z	0.002 (0.05) 0.010 (0.25) 0.022 (0.56)) 333 (8.4 026 (0.6	0.008 (0.21) 0.015 (0.38) 0.037 (0.94)
	NOT	E:		

 A & B are reference datum's and do not include mold deflash or protrusions.

All dimensions in inches (mm.) Angles are in degrees

Figure 22: 28-pin SSOP (D6) Mechanical Outline: Order as part no. CMX860D6

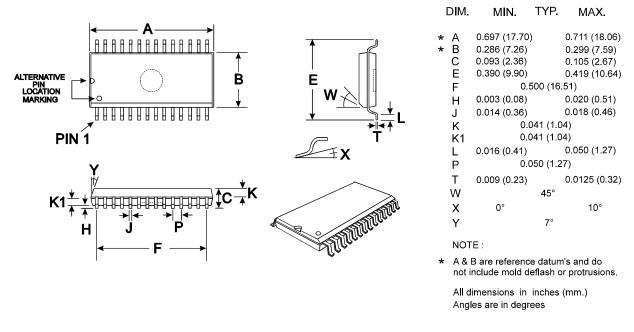


Figure 23: 28-pin SOIC (D1) Mechanical Outline: Order as part no. CMX860D1

All trademarks and service marks are held by their respective companies.

4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA