NAIS
1 HORSE-POWER COMPACT POWER RELAYS

TMP type

mm inch

FEATURES

- High switching capacity - 55 A inrush, 15 A steady state inductive load (1 Form A)
- Particularly suitable for air conditioners, dish washers, microwave ovens, ranges, central cleaning systems, copiers, facsimiles, etc.
- Two types available
"TM" type for direct chassis mounting
"TMP" type for PC board mounting
-TV-rated types available
-TÜV also approved

SPECIFICATIONS

Contact

Arrangement			1 Form, A, 1 Form B, 1 Form C
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)			$30 \mathrm{~m} \Omega$
Contact material			Silver alloy
Rating (resistive load)	Maximum switching power		3,750 VA
	Maximum switching voltage		250 V AC
	Max. switching current		15A
Expected life (min. operations)	Mechanical (at 180 cpm .)		5×10^{6}
	Electrical (at 20 cpm .)	1 Form A (Inrush 55 A , Steady 15 A 250 VAC $\cos \varphi=0.7$)	10^{5}
		1 Form B, 1 Form C (15 A 250 VAC, $\cos \varphi=1$)	5×10^{5}
Coil			
Nominal operating power		DC type	1.2 W
		AC type	1.4 VA (50 Hz)/1.3 VA (60 Hz)
Minimum operating power		DC type	0.77 W
		AC type	$0.90 \mathrm{VA}(50 \mathrm{~Hz}) / 0.84 \mathrm{VA}(60 \mathrm{~Hz})$

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{*} 3$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
${ }^{*}$ Excluding contact bounce time
${ }^{* 5}$ For the AC coil types, the operate/release time will differ depending on the phase.
${ }^{*}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$

Characteristics

Maximum operating speed			20 cpm .
Initial insulation resistance*1			Min. $100 \mathrm{M} \Omega$ at 500 V DC
Initial breakdown voltage*2	Between open contacts		1,500 Vrms
	Between contacts and coil		2,000 Vrms
Initial surge voltage between contacts and coil*3			Min. 5,000 V
Operate time*4 (at $20^{\circ} \mathrm{C}$) (at nominal voltage)			Approx. $10 \mathrm{~ms}^{* 5}$
Release time (without diode) ${ }^{* 4}$ (at $20^{\circ} \mathrm{C}$) (at nominal voltage)			Approx. 2 ms*5
Temperature rise (at $50^{\circ} \mathrm{C}$) (resistive)			Max. $70^{\circ} \mathrm{C}$
Shock resistance	Functional* ${ }^{*}$		$98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
	Destructive*7		$980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance	Functional*8		$88.2 \mathrm{~m} / \mathrm{s}^{2}\{9 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 1.5 mm
	Destructive		$88.2 \mathrm{~m} / \mathrm{s}^{2}\{9 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 1.5 mm
Conditions for operation, transport and storage*9 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ & +14^{\circ} \mathrm{F} \text { to }+122^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\%R.H.
Unit weight			Approx. 44 g 1.55 oz

${ }^{{ }^{7}}$ Half-wave pulse of sine wave: 6 ms
${ }^{*} 8$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 9}$ Refer to 5 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 24).

TYPICAL APPLICATIONS ORDERING INFORMATION

Air conditioners, microwave ovens, load management equipment, copiers, process control equipment

(Notes) 1. For UL/CSA recognized types, add suffix UL/CSA.
2. Standard packing Carton: 20 pcs.; Case: 200 pcs.

COIL DATA

DC Type at $2 \mathbf{2 0}^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

Nominal voltage	Pick-up voltage (max.)	Drop-out* voltage (min.)	Coil resistance, W ($\pm 10 \%$)	Nominal operating current, mA ($\pm 10 \%$)	Nominal operating power	Maximum allowable voltage (at $50^{\circ} \mathrm{C}$)
12 V DC	9.6 V DC	1.2 (0.6*) V DC	120	100	1.2 W	13.2 V DC
24	19.2	2.4 (1.2*)	480	50	1.2	26.4

AC Type at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

Nominal voltage	Pick-up voltage (max.)	Drop-out* voltage (min.)	Coil resistance, W ($\pm 10 \%$)	Nominal operating current, mA ($\pm 10 \%$)		Nominal operating power		Maximum allowable voltage (at $50^{\circ} \mathrm{C}$)
12 V AC	9.6 V AC	3.6 V AC	-	50 Hz	60 Hz	50 Hz	60 Hz	13.2 V DC
				117	108	1.4 VA	1.3 VA	
24	19.2	7.2	-	58	54	1.4 VA	1.3 VA	26.4
115	92	34.5	-	12	11	1.4 VA	1.3 VA	126.5

* Drop-out voltage for 1 Form B type is 5% of nominal voltage.

NOTES

1. The range of coil current for $A C$ relay is $\pm 15 \%$ (60 Hz). For DC relay it is $\pm 10 \%$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$.
2. The JA relay will operate in a range from 80% to 110% of the nominal coil voltage. It is however, recom-
mended that the relay be used in the range of 85% to
110% of the nominal coil voltage, with the temporary
voltage variation taken into consideration.
3. When the operating voltage of AC relays drops below 80% of the nominal coil voltage. The relay will generate a considerable amount of heat which is not recommended for maximum efficiency.
4. The coil resistance of $D C$ types is the measured value of the coil at a temperature of $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$. If the coil temperature changes by $\pm 1^{\circ} \mathrm{C}$. The measured value of the coil resistance should be increased or decreased by 0.4%.

ADDITIONAL SERIES

1. Following up-graded contact rating types recognized by

 UL are available. (For use in office appliances)| Contact
 arrangement | $P \quad$ Suffix |
| :---: | :---: |
| (Ex. JA 1a-TM-DC12V- -P) | |
| 1 Form C A | 25 A 250 V AC, $1 \mathrm{HP} 125,250$ V AC |
| 1 Form B | 25 A 250 V AC, $1 \mathrm{HP} \mathrm{125,250} \mathrm{~V} \mathrm{AC}$ |

2.TV-Rated Series

Contact arrangement	ULffix	CSA
	TV	TV

DIMENSIONS

TM

Remarks

Above dimensions are for 1 Form C type. For 1 Form A type, NC terminal is removed For 1 Form B type, NO terminal is removed.

Schematic (Bottom view)

1 Form B

1 Form C

Terminals—. 187 " quick connect terminals for coil and .250" for contacts

Mounting hole location

General tolerance: $\pm 0.3 \pm .012$
Tolerance: $\pm 0.1 \pm .004$

REFERENCE DATA

1. Maximum value for switching capacity
(Common for 1a, 2b, and 1c)

3.-(2) Coil temperature rise (1a-DC type) Point measured: Inside the coil Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

2. Life curve (Common for 1a, 1b, and 1c)

3.-(1) Coil temperature rise (1a-AC type) Point measured: Inside the coil Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

4.-(2) Operate time (1a-DC type)

5.-(1) Release time (1a-AC type)

5.-(2) Release time (1a-DC type)

6.-(1) Electrical life (15 A 250 V AC resistive)
3. Tested sample: JA1c-TMP-AC115V
4. Load: 15 A 250 V AC resistive load
5. Cycle rate: 20 cpm .
6. Circuit:

TEST RESULT:

1. Pick-up and drop-out voltage

* This shows percent rate against nominal coil voltage.
6.-(2) Electrical life (15 A 250 V AC Motor simulated load)

1. Tested sample: JA1a-TM-DC12V
2. Load: 250 V AC inductive load $(\cos \varphi=0.7)$

15 A steady and $55 \mathrm{~A}\left(0.3 \mathrm{~s}^{*}\right)$ inrush current
3. Cycle rate: 20 cpm .
4. Circuit:

TEST RESULT:

1. Pick-up and drop-out voltage

2. Contact resistance

3. No abnormality was observed in either insulation resistance or breakdown voltage.

2. Contact resistance

3. No abnormality was observed in either insulation resistance or breakdown voltage.

For Cautions for Use, see Relay Technical Information (Page 11 to 39).

