

PHOTOCOUPLERS PS9601, PS9601L

HIGH ISOLATION VOLTAGE HIGH SPEED PHOTOCOUPLER

PS9601, PS9601L are optically coupled isolators containing a GaAlAs LED on light emitting side (input side) and a photodiode and a signal processing circuit on light receiving side (output side) on one chip.

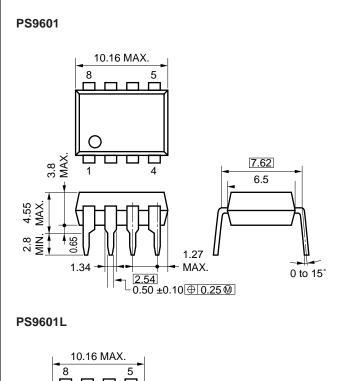
PS9601 is in a plastic DIP (Dual In-line Package) and PS9601L is lead bending type (Gull-wing) for surface mount.

FEATURES

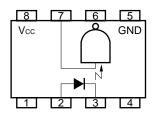
High isolation voltage
 High Propagation delay time
 Low input current
 BV: 5 000 V_{r.m.s.} MIN.
 tphl., tplh: 50 ns TYP.
 IFHL: 2.5 mA TYP.

Can be soldered by infrared reflow soldering

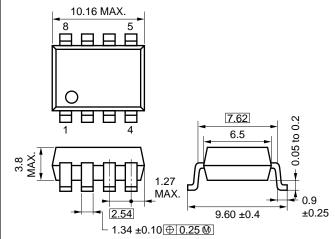
• Taping product number PS9601L-E3, E4


• UL recognized File No. E72422 (S)

APPLICATIONS


- · Computer and peripheral memory
- · Electronic instrument
- Audio-visual

PACKAGE DIMENSIONS (Unit: mm)



	PIN	Function
INPUT	1.	NC
	2.	Anode
	3.	Cathode
	4.	NC
OUTPUT	5.	GND
	6.	Vo
	7.	Ve*
	8.	Vcc

*VE is pulled-up to

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

Diode			
Forward Current	lF	30	mA
Reverse Voltage	VR	5	V
Power Dissipation	Po	60	mW
Detector			
Supply Voltage	Vcc	7	V
Output Voltage	Vo	7	V
Output Current	lo	50	mA
Enable Voltage	VE	5.5	V
Power Dissipation	Pc	85	mW
Isolation Voltage *1	BV	5 000	$V_{r.m.s.}$
Operating Temperature	T_{opt}	-40 to +85	°C
Storage Temperature	Tstg	-55 to +125	°C

^{*1} AC voltage for 1 minute T_A = 25 °C, RH = 60 % between input and output.

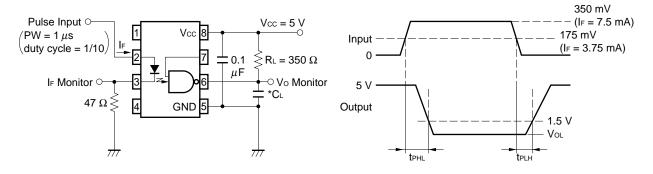
RECOMMENDED OPERATING CONDITIONS (TA = 25 °C)

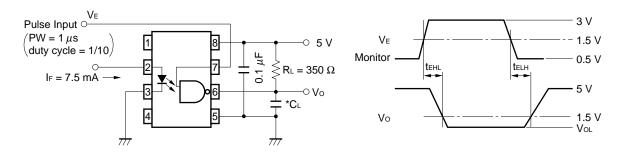
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Low Level Input Current	IFL	0		250	μΑ
High Level Input Current	lғн	7	10	15	mA
High Level Enable Voltage	VEH	2		Vcc	V
High Level Enable Voltage	VEL	0		0.8	V
Supply Voltage	Vcc	4.5	5	5.5	V
Operating Temperature	Topt	0	25	70	°C

^{*} By-pass capacitor of more than 0.1 μF is used between Vcc and GND near device.

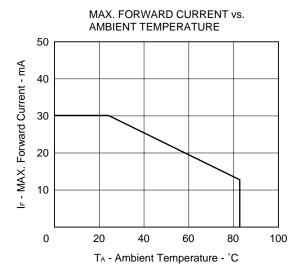
ELECTRICAL CHARACTERISTICS (TA = -40 to +85 °C)

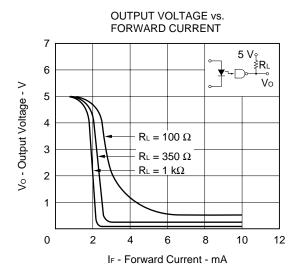
	PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Diode	Forward Voltage	VF	1.4	1.65	1.9	V	I _F = 10 mA, T _A = 25 °C
D i	Reverse Current	IR			10	μΑ	V _R = 5 V, T _A = 25 °C
	Capacitance	Ct		60		pF	V = 0, f = 1 MHz, T _A = 25 °C
	High Level Output Current	Іон		2	250	μΑ	$Vcc = Vo = 5.5 \text{ V}, \text{ IF} = 250 \ \mu\text{s}, \text{ Ve} = 2 \text{ V}$
	Low Level Output Voltage	VoL		0.2	0.6	V	Vcc = 5.5 V, I _F = 5 mA, V _E = 2 V, I _O = 13 mA
Detector	High Level Supply Current	Іссн	5	7	10	mA	Vcc = 5.5 V, VE = 0.5 V, IF = 0
Dete	Low Level Supply Current	Iccl	10	13	18	mA	Vcc = 5.5 V, VE = 2 V, IF = 10 mA
	High Level Enable Current	ІЕН	-0.7	-1	-1.5	mA	Vcc = 5.5 V, VEH = 2 V
	Low Level Enable Current	IEL	-1	-1.4	-2	mA	Vcc = 5.5 V, VEL = 0.5 V

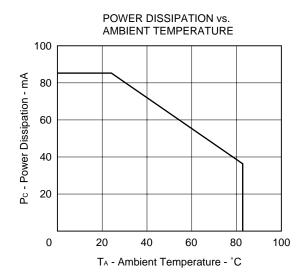

3


ELECTRICAL CHARACTERISTICS (TA = 25 °C)

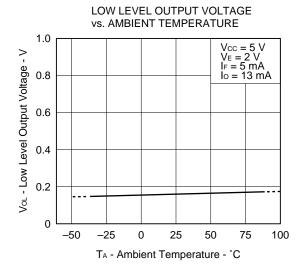
	PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
	Treshold Input Current High \rightarrow Low	IFHL	0.5	2.5	5	mA	Vcc = 5 V, Ve = 2 V, Ta = -40 to + 85 °C Vo = 0.8 V, RL = 350 Ω
	Isolation Resistance	R ₁₋₂	10 ¹¹			Ω	V _{in-out} = 1 kV _{DC} , RH 40 to 60 %
	Isolation Capacitance	C ₁₋₂		0.6		pF	V = 0, f = 1 MHz
	Propagation Delay Time*2 High \rightarrow Low	t PHL		50	75	ns	V_{CC} = 5 V, I_F = 7.5 mA R_L = 350 $Ω$, C_L = 15 pF
Coupled	Propagation Delay Time* ² Low → High	tрLн		50	75	ns	
0	Rise Time	tr		20		ns	
	Fall Time	tf		10		ns	
	Enable Propagation Delay Time* ³ High → Low	t EHL		10		ns	$V_{CC} = 5 \text{ V}, \text{ I}_F = 7.5 \text{ mA}$ $V_{EH} = 3 \text{ V}, \text{ V}_{EL} = 0.5 \text{ V}$ $R_L = 350 \ \Omega, \ C_L = 15 \text{ pF}$
	Enable Propagation Delay Time* ³ Low → High	t ELH		25		ns	

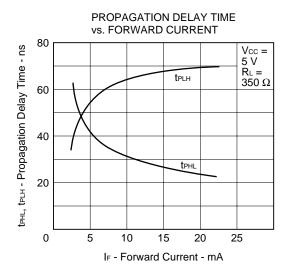

^{*2} Test Circuit for Propagation delay time

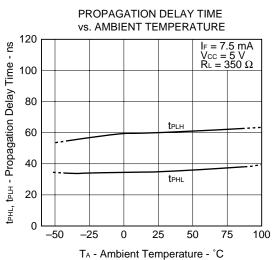

- * C_L is approximately 15 pF, which includes probe and stray wiring capacitance.
- *3 Test Circuit for enable Propagation delay time

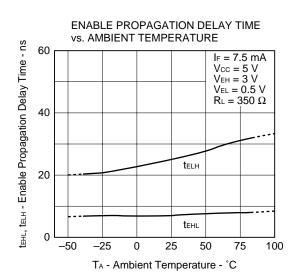


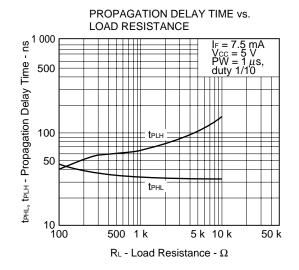
TYPICAL CHARACTERISTICS (TA = 25 °C)









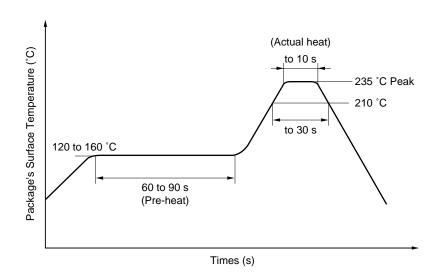


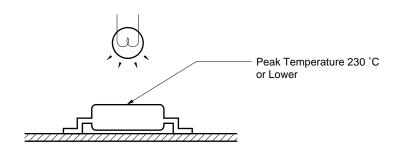
PRECAUTIONS IN MOUNTING THE DEVICE

(1) Precautions in mounting the device by infrared reflow soldering

• Peak reflow temperature : 235 °C or below (Plastic surface temperature)

• Reflow time : 30 seconds or less (Time period during which the plastic surface temperature


is 210 °C)


· Number of reflow processes: One

Flux
 Rosin flux containing small amount of chlorine (The flux with a maximum

chlorine content of 0.2 Wt% is recommended.)

INFRARED RAY REFLOW TEMPERATURE PROFILE

(2) Precautions in mounting the device in solder dip method

Temperature : 260 °C or lower
 Time : 10 sec. or less

• Flux : Rosin group flux, where the amount of chloride component is small.

Caution

The Great Care must be taken in dealing with the devices in this guide.

The reason is that the material of the devices is GaAs (Gallium Arsenide), which is designated as harmful substance according to the law concerned.

Keep the law concerned and so on, especially in case of removal.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.