DATA SHEET

PHOTOCOUPLER PS9711

HIGH NOISE REDUCTION/HIGH-SPEED 10 Mbps, TOTEM-POLE OUTPUT TYPE 5-PIN SOP TOM PHOTOCOUPLER -NEPOC™ Series-

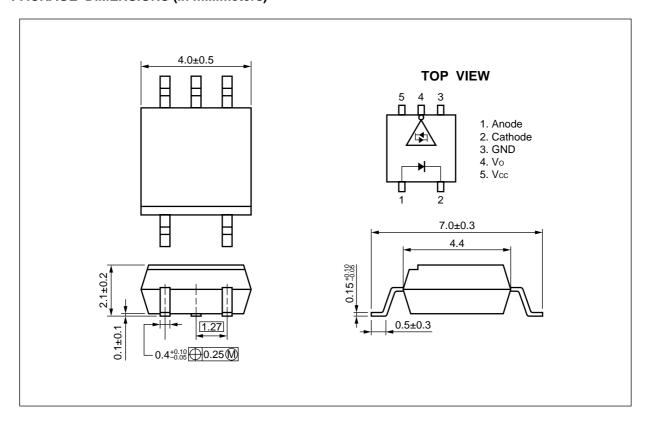
DESCRIPTION

The PS9711 is an optically coupled high-speed, totem-pole output isolator containing a GaAlAs LED on light emitting diode (input) and a photodiode and a signal processing circuit on light receiving side (output side) on one chip.

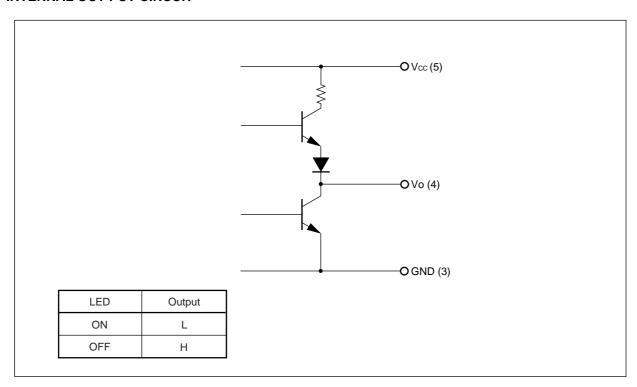
FEATURES

- High common mode transient immunity (CMH, CML = ± 10 kV/ μ s TYP.)
- Small package (5-pin SOP)
- ★ High-speed response (tphL = 30 ns, tpLh = 35 ns TYP.)
 - Pulse width distortion (| tphl tplh | = 7 ns TYP.)
 - Totem-pole output (No pull-up resistor required)
 - · Ordering number of taping product: PS9711-E3, E4: 900 pcs/reel,

PS9711-F3, F4 (Recommended): 3 500 pcs/reel


APPLICATIONS

- · Computer and peripheral manufactures
- Measurement equipment
- PDP


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

PACKAGE DIMENSIONS (in millimeters)

★ INTERNAL OUT PUT CIRCUIT

ORDERING INFORMATION

Part Number	Package	Packing Style	Application Part Number*1
PS9711	5-pin SOP	Magazine case 100 pcs	PS9711
PS9711-E3		Embossed Tape 900 pcs/reel	
PS9711-E4			
PS9711-F3		Embossed Tape 3 500 pcs/reel	
PS9711-F4			

^{*1} For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Diode	Forward Current	lF	30	mA
	Reverse Voltage	VR	3.0	V
Detector	Detector Supply Voltage		7	V
	Output Voltage	Vo	7	V
	High Level Output Current 1	Іон	-5	mA
	Low Level Output Current [™]	loL	13	mA
	Power Dissipation [™]	Pc	130	mW
Isolation Voltage*2		BV	2 500	Vr.m.s.
Operating Ambient Temperature		TA	-40 to +85	°C
Storage Temperature		T _{stg}	-55 to +125	°C

^{*1} T_A = -40 to +85 °C

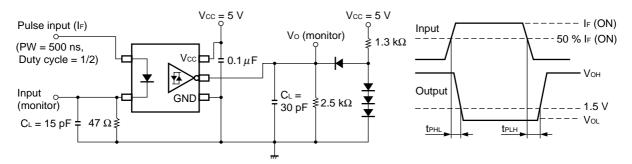
RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
High Level Input Current	lғн	7.5		12.5	mA
Low Level Input Current	IFL	0		250	μΑ
Supply Voltage	Vcc	4.5	5.0	5.5	V
TTL (loads)	N			3	

3

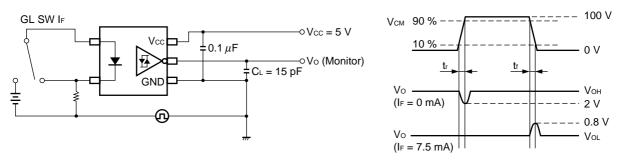
^{*2} AC voltage for 1 minute at $T_A = 25$ °C, RH = 60 % between input and output.

ELECTRICAL CHARACTERISTICS (Ta = -40 to +85 °C, unless otherwise specified)


Parameter		Symbol	Conditions		MIN.	TYP.*1	MAX.	Unit
Diode	Forward Voltage	VF	I _F = 10 mA, T _A = 25 °C		1.4	1.65	1.9	V
	Reverse Current	I R	VR = 3 V, TA = 25 °C				10	μА
	Terminal Capacitance	Ct	V = 0 V, f = 1 MHz, T _A = 25 °C			30		pF
Detector	High Level Output Current	Іон	Vcc = Vo = 5.5 V, I _F = 250 μA			1	200	μА
	High Level Output Voltage	Vон	$Vcc = 4.5 \text{ V}, \text{ IF} = 250 \ \mu\text{A}, \text{ IoH} = -2 \text{ mA}$		2.4	3.0		V
	Low Level Output Voltage	Vol	Vcc = 4.5 V, IF = 7 mA, Io = 8 mA			0.38	0.6	V
	High Level Supply Current	Іссн	Vcc = 5.5 V, I _F = 0 mA			11	17	mA
	Low Level Supply Current	Iccl	Vcc = 5.5 V, I _F = 10 mA			12	18	mA
	High Level Output Short Circuit Current	Іоѕн	Vcc = 5.5 V, Vo = GND, I _F = 0 mA, 10 ms or less			-26		mA
	Low Level Output Short Circuit Current	losı	Vcc = Vo = 5.5 V, I _F = 8 mA, 10 ms or less			34		mA
Coupled	Threshold Input Current	IFHL	Vcc = 5 V TA = 25 °	C.		2.0	5	mA
	$(H \rightarrow L)$						6	
	Threshold Input Current	IFLH	Vcc = 5 V T _A = 25 °	°C	0.5			mA
	$(L \rightarrow H)$				0.35			
	Isolation Resistance	R _I -o	V _{I-O} = 1 kV _{DC} , RH = 40 to 60 %, T _A = 25 °C		10¹¹			Ω
	Isolation Capacitance	C _{I-O}	V = 0 V, f = 1 MHz, T _A = 25 °C			0.4		pF
	Propagation Delay Time	t PHL	T _A = 25 °	C	15	30	65	ns
	$(H \rightarrow L)^{^{*2}}$		Vcc = 5 V, I _F = 7.5 mA		10		85	
	Propagation Delay Time	t PLH	T _A = 25 °	C	15	35	65	ns
	$(L \rightarrow H)^{*2}$		Vcc = 5 V, I _F = 7.5 mA		10		85	
	Pulse Width Distortion (PWD) *2	tphl-tplh	Vcc = 5 V, I _F = 7.5 mA			7	35	ns
	Common Mode Transient Immunity at High Level Output ³	СМн	Vcc = 5 V, TA = 25 °C, IF = 0 mA, Vo (MIN.) = 2 V, VcM = 100 V		1	10		kV/μs
	Common Mode Transient Immunity at Low Level Output ³	CML	Vcc = 5 V, T _A = 25 °C, I _F = 7.5 mA, Vo (MAX.) = 0.8 V, VcM = 100 V		1	10		kV/μs

*

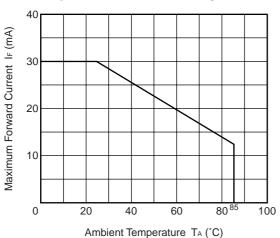
 \star



- *1 Typical values at $T_A = 25$ °C
- *2 Test circuit for propagation delay time

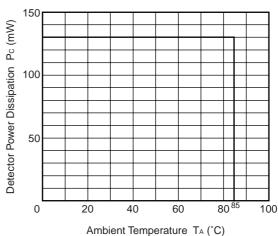
C_L is approximately which includes probe and stray wiring capacitance.

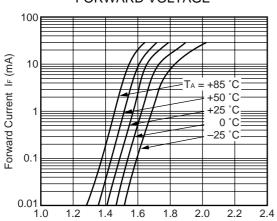
*3 Test circuit for common mode transient immunity


 C_{L} is approximately which includes probe and stray wiring capacitance.

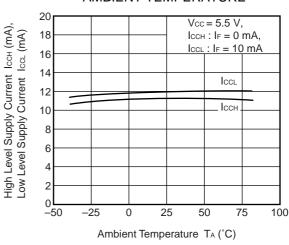
USAGE CAUTIONS

- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. By-pass capacitor of more than 0.1 μ F is used between Vcc and GND near device.

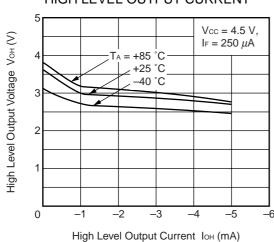

TYPICAL CHARACTERISTICS (TA = 25 °C, unless otherwise specified)



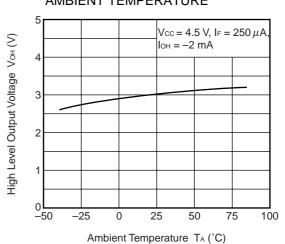
vs. AMBIENT TEMPERATURE


DETECTOR POWER DISSIPATION

FORWARD CURRENT vs. FORWARD VOLTAGE

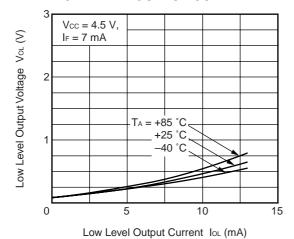


SUPPLY CURRENT vs. AMBIENT TEMPERATURE

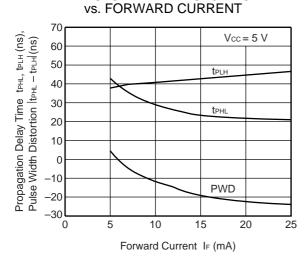


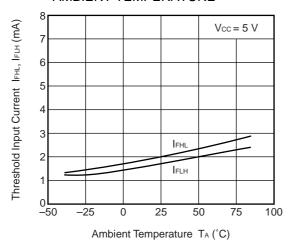
HIGH LEVEL OUTPUT VOLTAGE vs. HIGH LEVEL OUTPUT CURRENT

Forward Voltage V_F (V)

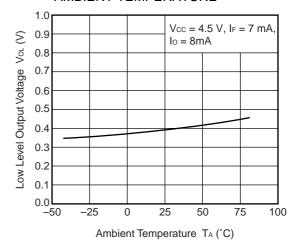


HIGH LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE

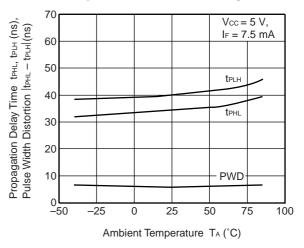



LOW LEVEL OUTPUT VOLTAGE vs. LOW LEVEL OUTPUT CURRENT

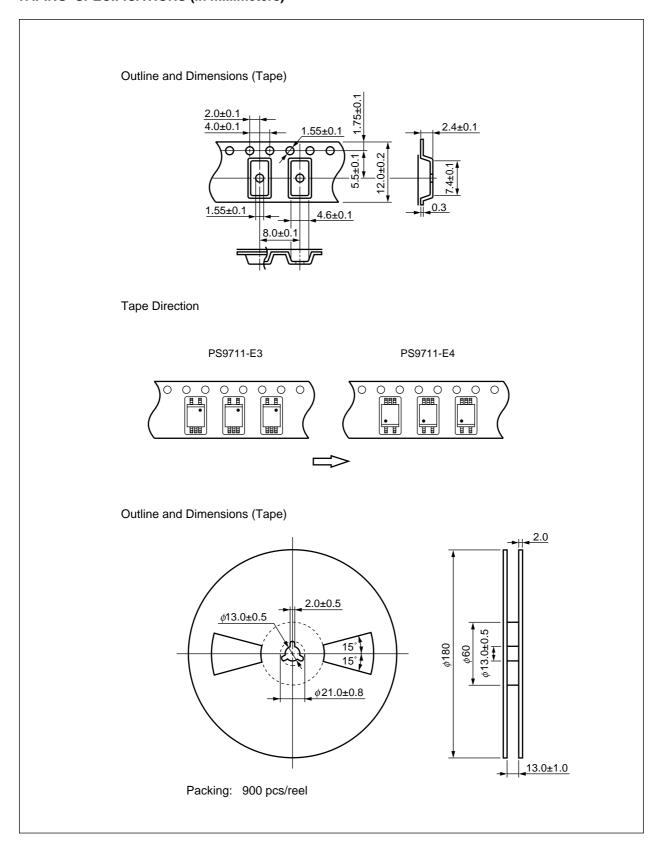
PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION



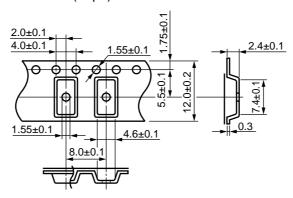
THRESHOLD INPUT CURRENT vs. AMBIENT TEMPERATURE



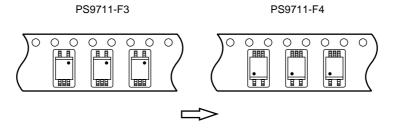
Remark The graphs indicate nominal characteristics.

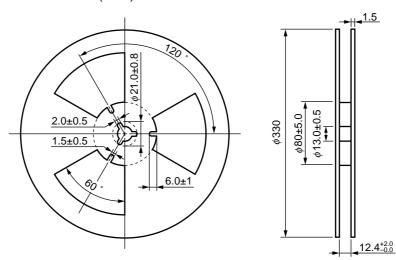

LOW LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE

PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. AMBIENT TEMPERATURE



★ TAPING SPECIFICATIONS (in millimeters)




Outline and Dimensions (Tape)

Tape Direction

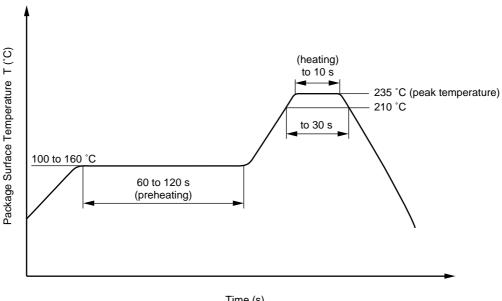
Outline and Dimensions (Reel)

Packing: 3 500 pcs/reel

RECOMMENDED SOLDERING CONDITIONS

(1) Infrared reflow soldering

• Peak reflow temperature 235 °C or below (package surface temperature)


30 seconds or less \bullet Time of temperature higher than 210 $^{\circ}\text{C}$

· Number of reflows Three

• Flux Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt % is recommended.)

Recommended Temperature Profile of Infrared Reflow

Time (s)

(2) Dip soldering

260 °C or below (molten solder temperature) Temperature

• Time 10 seconds or less

One (Allowed to be dipped in solder including plastic mold portion.) • Number of times

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of

0.2 Wt % is recommended.)

(3) Cautions

Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

[MEMO]

CAUTION

Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal.

NEPOC is a trademark of NEC Corporation.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8