

BIPOLAR ANALOG INTEGRATED CIRCUIT μ PC1891A

MATRIX SURROUND-SOUND PROCESSOR

The μ PC1891A is a specific IC to reproduce surround-sound by using a signal matrix.

The IC is based on a unique high-speed and low-noise bipolar process and high-precision on-chip filter technology, and provides ideal sound-field effects by using the minimum number of parts.

The IC provides wide sound with two speakers and rich, stereophonic sound with three speakers.

In the case of stereo signal, the IC has the movie mode to reproduce real human voices, the music mode to permit the listeners to experience the expanse of a music hall, and it has the monaural mode to make monaural signal into wide, deep sound. The modes can be selected freely by using 2-bit parallel control pins.

The package of the IC is a reliable, standard 20-pin DIP.

FEATURES

- Built-in high-precision filter
- Built-in output adjusting attenuator and mute circuit
- 2-bit parallel mode select
- Three modes are available: movie, music, and monaural modes
- Low power consumption: 12 V/20 mA TYP.

APPLICATIONS

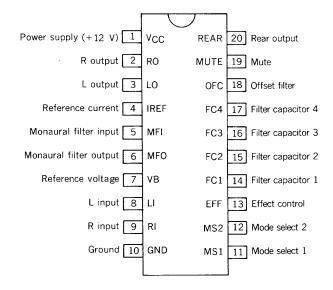
TV

ORDERING INFORMATION

Part Number	Package	Quality Grade
μPC1891ACY	20-pin plastic DIP (400 mil)	Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.


BLOCK DIAGRAM

Note (): Recommended value.

PIN CONFIGURATION (Top view)

ABSOLUTE MAXIMUM RATINGS ($T_a = 25$ °C)

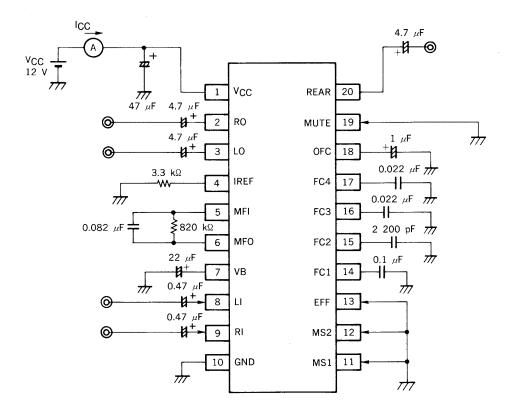
ITEM	SYMBOL	RATING	UNIT	CONDITION
Supply Voltage	Vcc	+14	V	No signal
Input Pin Voltage	VIN	Vcc	v	Voltage applied to pins 8, 9, 11, 12, 13, and 19
Output Pin Current	IOUT	±10	mA	Current to and from pins 2, 3, and 20
Storage Temperature	T _{stg}	-40 to +125	°C	
Operating Temperature	T _{opt}	-20 to +75	°c	V _{CC} = 12 V
Power Dissipation	PD	600	mW	T _a = 75 °C

RECOMMENDED OPERATING CONDITIONS

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Supply Voltage (1) (Good Characteristic Range)	V _{CC} 1	11	12	13	V	
Supply Voltage (2) (Surround Operating Range)	V _{CC} 2	9		14	V	
Input Signal Amplitude	V _{L1} , _{R1}	·	1.4	2.5	V _{p-p}	Signal voltage input to pins 8 and 9
Mode Select Pin Voltage (High)	VMSH	4	5	Vcc	V	High voltage at pins 11 and 12
Mode Select Pin Voltage (Low)	VMSL	0	0	2	V	Low voltage at pins 11 and 12
Mute Pin Voltage (High)	VMVTEH	4	5	V _{CC} -3	V	High voltage at pin 19
Mute Pin Voltage (Low)	VMVTEL	0	0	2	V	Low voltage at pin 19
Effect Pin Voltage (High)	VEFFH	-	5	V _{CC} -3	V	Upper voltage at pin 13
Effect Pin Voltage (Low)	VEFFL	_	0	-	V	Lower voltage at pin 13
Load Impedance	ZL	10			kΩ	Output from pins 2, 3, and 20
Ambient Operating Temperature	T _{opt}	-20		+75	°C	

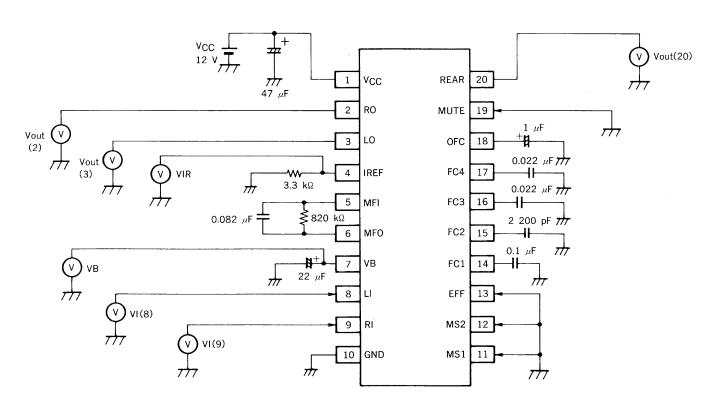
_

ELECTRICAL CHARACTERISTICS (T_a = 25 $^{\circ}$ C, RH \leq 70%, V_CC = 12 V)

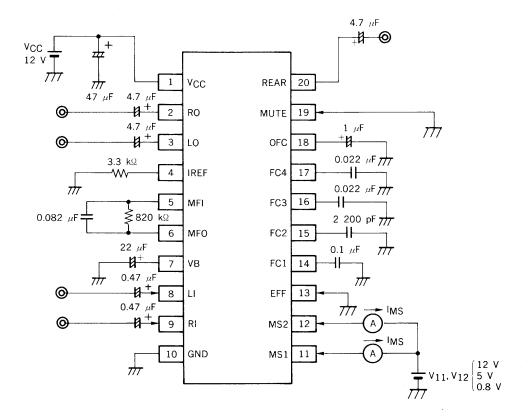

NO.	ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION	MEASURING CIRCUIT NO.
1	Supply Current	^I CC		20	30	mA	No signal, I _{REF} pin resistance: 3.3 kΩ	1
2	Bias Potential	VΒ	$\frac{V_{CC}}{2}$ -0.2	V _{CC}	$\frac{V_{CC}}{2}$ +0.2	V	Voltage at pin 7	2
3	Reference Current Pin Potential	VIR	1.10	1.20	1.30	٧	I _{REF} pin resistance: 3.3 kΩ	2
4	Mode Select Pin Current (1)	I _{MS1}		⁻ 110	160	μΑ	Voltage applied to pins 11 and 12: 12 V	3
5	Mode Select Pin Current (2)	I _{MS2}		45	70	μΑ	Voltage applied to pins 11 and 12: 5 V	3
6	Mode Select Pin Current (3)	I _{MS3}			12	μΑ	Voltage applied to pins 11 and 12: 0.8 V	3
7	Effect Control Pin Current	l _{EFF}		0.3	1.0	μА	Voltage applied to pin 13: 0.0 to 5.0 V	4
8	Input Pin Voltage	VI	$\frac{V_{CC}}{2}$ -0.2	V _{CC}	$\frac{V_{CC}}{2} + 0.2$	V	Voltage applied to pins 8 and 9	2
9	Output Pin Voltage	Vout	4.6	5.1	5.6	V	Voltage applied to pins 2, 3, and 20	2
10	In-phase Gain (OFF)	G _{OFF}	-0.2	0.8	1.8	dB	Mode OFF, Input signal of 1 kHz, 1.4 V_{p-p} , Rin \rightarrow Rout, Lin \rightarrow Lout	5
11	LR In-phase Gain Difference (OFF)	DG _{OFF}	-1	0	+1	dB	Mode OFF, input signal of 1 kHz, 1.4 V_{p-p} (Rin \rightarrow Rout) — (Lin \rightarrow Lout)	5
12	In-phase Gain (Movie 1)	G _{MOV1}	2	7	12	dB	Movie mode, V_{EFF} = 2.5 V Input signal of 1 kHz, 1.4 V_{p-p} Rin \rightarrow Rout, Lin \rightarrow Lout	5
13	In-phase Gain (Movie 2)	G _{MOV2}	3	8	13	dB	Movie mode, V_{EFF} = 5.0 V Input signal of 1 kHz, 1.4 V_{p-p} Rin \rightarrow Rout, Lin \rightarrow Lout	5
14	LR In-phase Gain Difference (Movie)	DG _{MOV}	-2	0	+2	dB	Movie mode, $V_{EFF} = 5.0 \text{ V}$ Input signal of 1 kHz, 1.4 V_{p-p} (Rin \rightarrow Rout) — (Lin \rightarrow Lout)	5
15	In-phase Gain (Music 1)	G _{MUS1}	4	6	8	dB	Music mode, V_{EFF} = 2.5 V Input signal of 1 kHz, 1.4 V_{p-p} Rin \rightarrow Rout, Lin \rightarrow Lout	5
16	In-phase Gain (Music 2)	G _{MUS2}	5.5	7.5	9.5	dB	Music mode, $V_{EFF} = 5.0 \text{ V}$ Input signal of 1 kHz, 1.4 V_{p-p} Rin \rightarrow Rout, Lin \rightarrow Lout	5
17	LR In-phase Gain Difference (Music)	DG _{MUS}	-2	0	+2	dB	Music mode, $V_{EFF} = 2.5 \text{ V}$ Input signal of 1 kHz, 1.4 V_{p-p} (Rin \rightarrow Rout) — (Lin \rightarrow Lout)	5
18	Monaural L Output 1	L _{MON1}	2.5	4.5	6.5	dB	Monaural mode, $V_{EFF} = 2.5 \text{ V}$ Input signal of 250 Hz 1.4 V_{p-p} , Rin and Lin \rightarrow Lout	5
19	Monaural L Output 2	L _{NON2}		-4.0	0.0	dB	Monaural mode, V_{EFF} = 2.5 V Input signal of 1 kHz, 1.4 V_{p-p} , Rin and Lin \rightarrow Lout	5
20	Monaural L Output 3	LMON3	4.5	7.0	9.5	dB	Monaural mode, V_{EFF} = 2.5 V Input signal of 3.6 kHz, 1.4 V_{p-p} , Rin and Lin \rightarrow Lout	5

NO.	ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION	MEASURING CIRCUIT NO.
21	Monaural R Output 1	R _{MON1}		-4.5	0.0	dB	Monaural mode, $V_{EFF} = 2.5 \text{ V}$ Input signal of 250 Hz, 1.4 V_{p-p} , Rin and Lin \rightarrow Rout	5
22	Monaural R Output 2	R _{MON2}	1.8	3.8	5.8	dB	Monaural mode, $V_{EFF} = 2.5 \text{ V}$ Input signal of 1 kHz, 1.4 V_{p-p} , Rin and Lin \rightarrow Rout	5
23	Monaural R Output 3	R _{MON3}		-20	-8	dB	Monaural mode, V_{EFF} = 2.5 V Input signal of 3.6 kHz, 1.4 V_{p-p} . Rin and Lin \rightarrow Rout	5
24	Rear Output Gain 1	G _{REA1}		-30		dB	Music mode, $V_{EFF} = 0.0 \text{ V}$ Input signal of 1 kHz, 1.4 V_{p-p} , Rin or Lin \rightarrow REARout	6
25	Rear Output Gain 2	G _{REA2}	-12	-9.4	-8.0	dB	Music mode, V_{EFF} = 2.5 V Input signal of 1 kHz, 1.4 V_{p-p} , Rin or Lin \rightarrow REARout	6
26	Rear Output Gain 3	G _{REA3}		-8.2	-5.0	dB	Music mode, $V_{EFF} = 5 \text{ V}$ Input signal of 1 kHz, 1.4 V_{p-p} , Rin or Lin \rightarrow Lout	6
27	Maximum Output	^V ом1	7.8	8.2		V _{p-p}	Mode OFF, V _{CC} = 12 V, Input signal of 1 kHz T.H.D. = 3 %, Rout and Lout measurement	7
28	Distortion Factor	T.H.D.		0.1	0.5	%	Mode OFF, Input signal of 1 kHz, 1.4 V_{p-p} , Rin → Rout, Lin → Lout	7
29	Output Noise (OFF)	NO(OFF)		0.2	0.4	mV _{r,m,s} .	Mode OFF, Input termination Using DIN/AUDIO, Rout and Lout measurement	8
30	Output Noise (Movie)	N _{O(MOV)}		0.2	0.4	mV _{r,m.s.}	Movie mode, Input termination Using DIN/AUDIO, Rout and Lout measurement	8
31	Output Noise (Music)	N _{O(MUS)}		0.2	0.4	mV _{r.m.s.}	Music mode, Input termination Using DIN/AUDIO, Rout and Lout measurement	8
32	Output Noise (Monaural)	NO(MON)		0.2	0.4	mV _{r.m.s.}	Monaural mode, Input termination Using DIN/AUDIO, Rout and Lout measurement	8
33	Mute Attenuation	D _M		-80	-70	dB	Mode OFF, $V_{EFF} = 2.5 \text{ V}$, $V_{MUTE} = 5 \text{ V}$ Input signal of 4 kHz, 1.4 V_{p-p} , $Rin \rightarrow Rout$, $Lin \rightarrow Lout$	9
34	Crosstalk	S _x		-60	-50	dB	Mode OFF, $V_{EFF} = 2.5 \text{ V}$ Input signal of 4 kHz, 1.4 V_{p-p} , Rin \rightarrow Lout, Lin \rightarrow Rout	9
35	Inter-mode Offset	V _{OSM}	-150	0	150	mV	Difference among values in each modes Rout, Lout and REARout	10
36	Mute offset	V _{OSD}	-150	0	150	mV	Difference between mute-on/ off values Rout, Lout, and REARout measurement	10
37	Signal Input Pin Impedance	Z _{IN}	20	40		kΩ	Rin and Lin measurement	11
38	Output Pin Impedance	Z _{OUT}		20	60	Ω	Rout, Lout, and REARout measurement	

Note: Rin

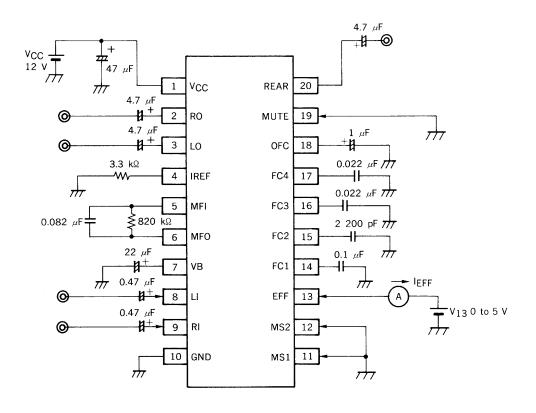

Rin : pin 9
Lin : pin 8
Rout : pin 2
Lout : pin 3
REARout : pin 20

Power supply Current (I_{CC})

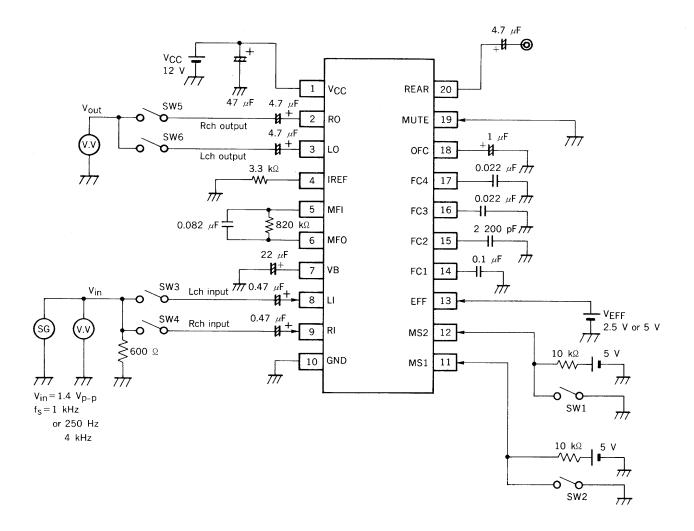


Measuring Circuit 2

Bias potential input/output pin potential and reference current pin potential



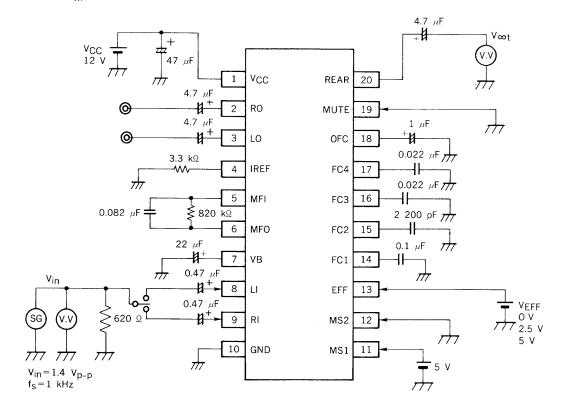
Mode select pin current (I_{MS})


Measuring Circuit 4

Effect control pin current (IEFF)

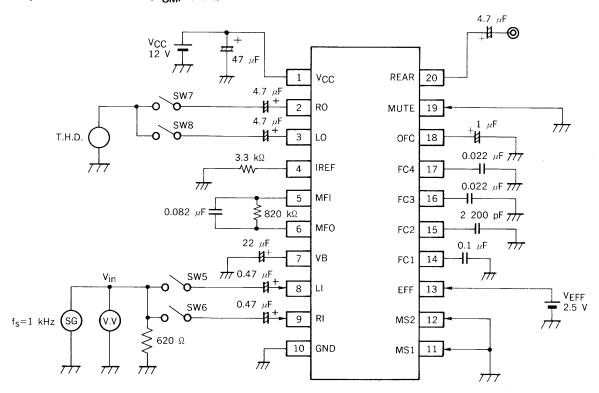
In-phase gain and monaural output

$$Gain = 20 log (\frac{V_{out}}{V_{in}})$$

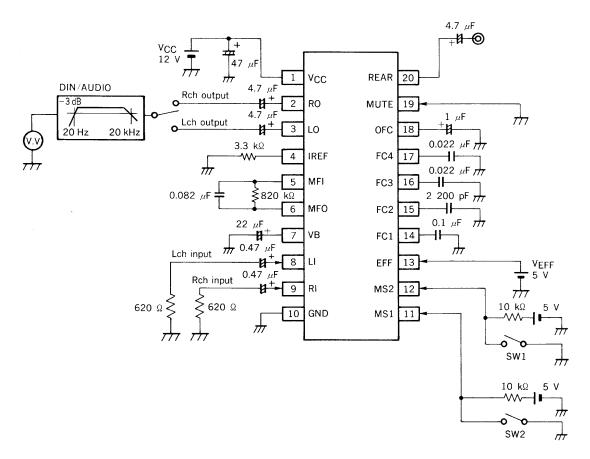

Item	Input	Output	SW3	SW4	SW5	SW6
In-phase gain Mode: Off	Lin	Lout	ON	OFF	OFF	ON
Music Movie	Rin	Rout	OFF	ON	ON	OFF
Monaural output	Lin	Lout	ON	ON	OFF	ON
	and Rin	Rout	ON	ON	ON	OFF

Mode Select

Mode	SW1	SW2
OFF	ON	ON
Music	ON	OFF
Movie	OFF	ON
Monaural	OFF	OFF

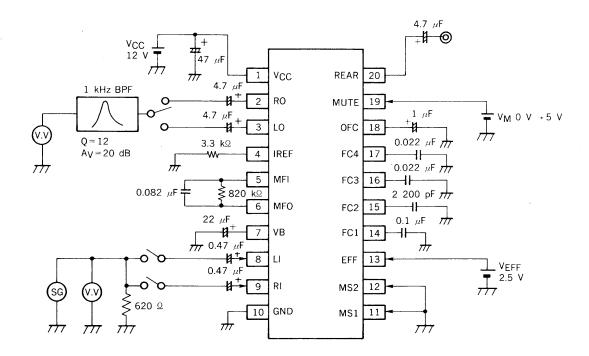

Rear output gain (GREA)

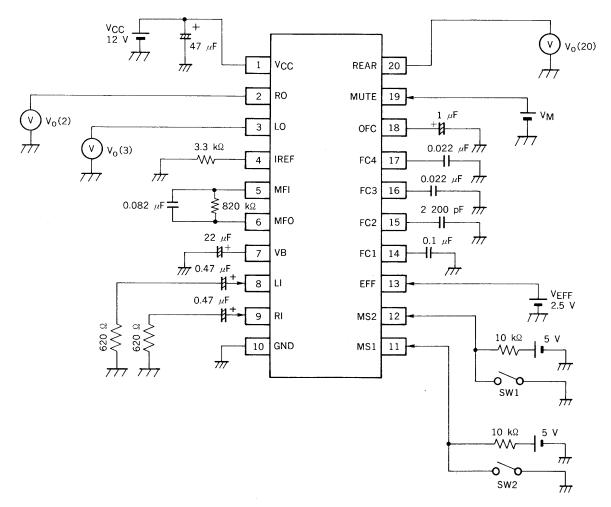
$$Gain = 20 \log \left(\frac{V_{out}}{V_{in}} \right)$$



Measuring Circuit 7

Maximum output and distortion factor ($V_{\mbox{OM}}$, T.H.D.)


Output noise (NO)


Mode select

Mode	SW1	SW2
OFF	ON	ON
Music	ON	OFF
Movie	OFF	ON
Monaural	OFF	OFF

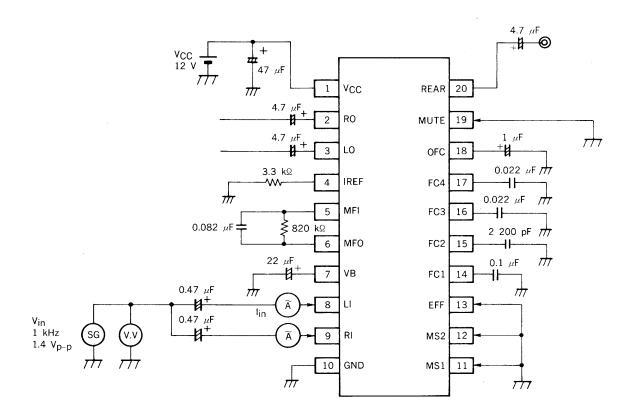
Mute attenuation (DM) and crosstalk (SX)

Inter-mode and mute offsets

○ Inter-mode offset (V_{OSM})
Between V_o (in each mode) and V_o (in OFF mode)
(Note: $V_M = 0 \ V$)

○ Mute offset (V_{OSD})

Between V_o (V $_{M}$ = 0 V) and V_o (V $_{M}$ = 5 V)


(Note: Mode OFF)

Mode Select

Mode	SW1	SW2
OFF	ON	ON
Music	ON	OFF
Movie	OFF	ON
Monaural	OFF	OFF

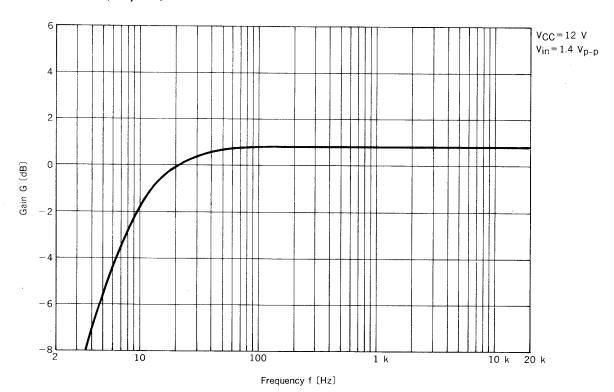
Signal input pin impedance (Zin)

$$Z_{in} = \frac{V_{in}}{I_{in}}$$

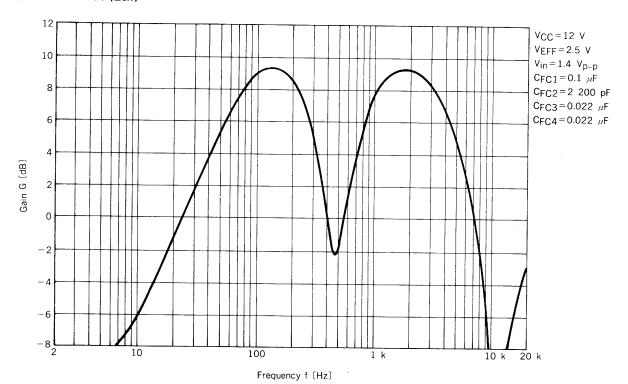
Mode Control

The μ PC1891A allows four types of surround effects in the movie, music, monaural and OFF modes to be selected according to their respective combinations of H and L levels of pins No. 11 (MS1) and No. 12 (MS2).

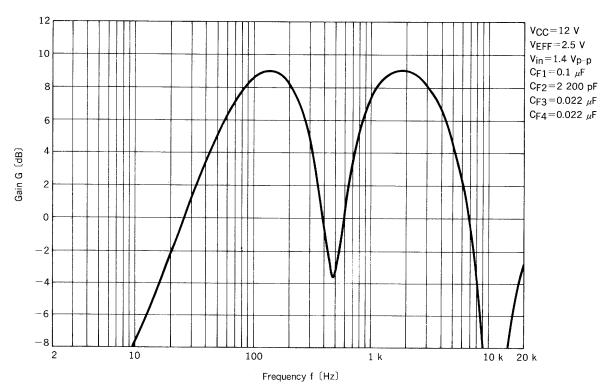
Mode Select Code

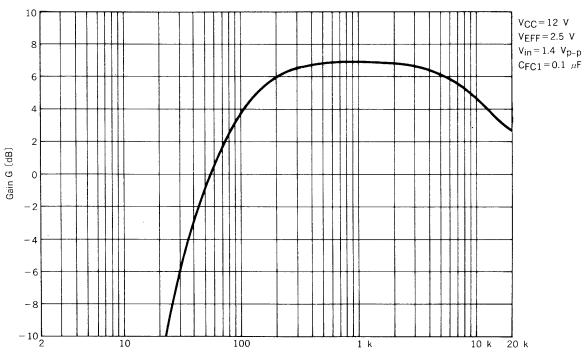

Code Mode	MS1 (11)	MS2 (12)
OFF	L	L
Music	Н	L
Movie	L	Н
Monaural	Н	Н

Caution In the case of changing surround mode and power ON/OFF, mute (approx. 200 ms) must be used for pop noise reduction.

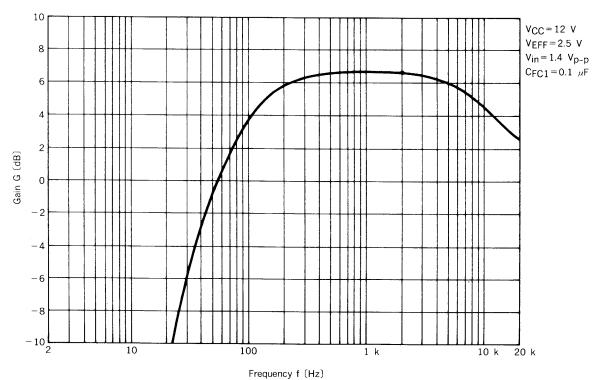

The following shows reference data for frequency response characteristics in each mode. It will help explain each type of surround effect. For the characteristics of the IC, please see the list of electrical characteristics.

Frequency Response Characteristics in Each Mode (T $_a$ = 25 $^{\circ}$ C)

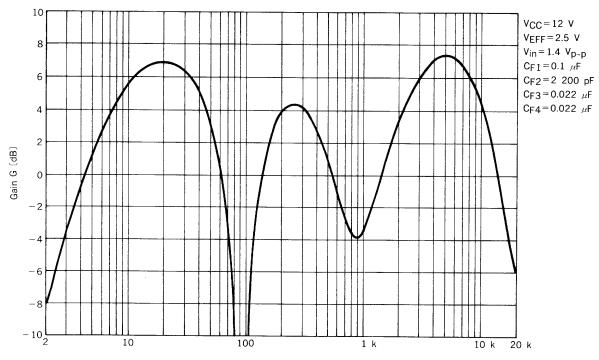

1. OFF Mode (Lch, Rch)


2. Movie Mode (Lch)

3. Movie Mode (Rch)

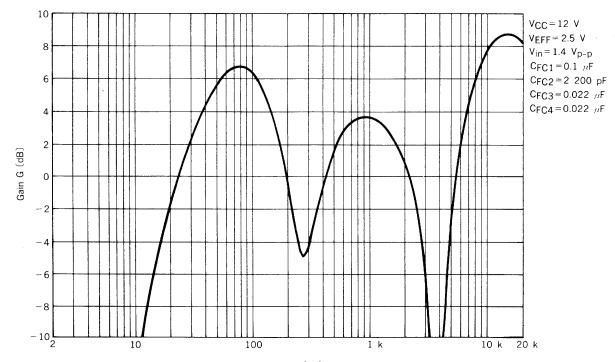


4. Music Mode (Lch)



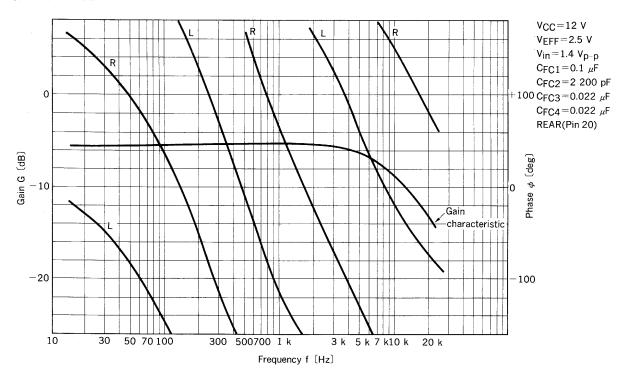
Frequency f (Hz)

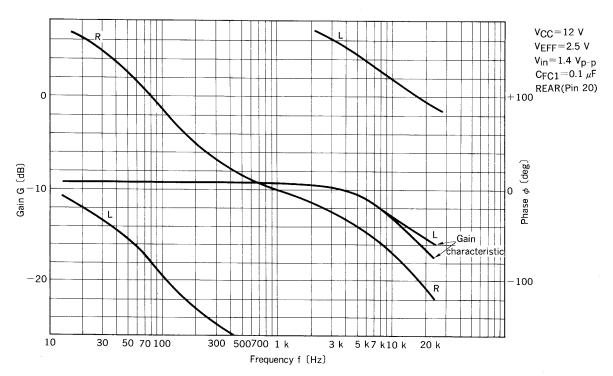
5. Music Mode (Rch)



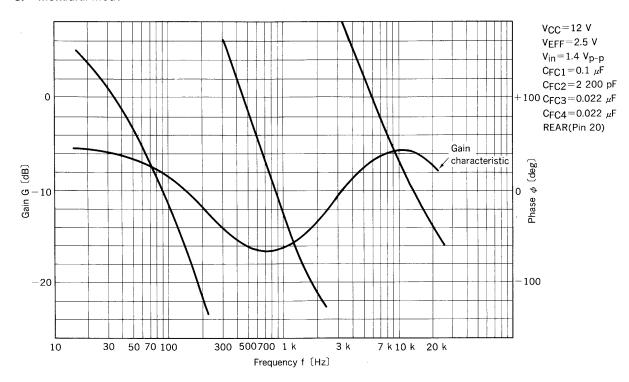
6. Monaural Mode (Lch)

Frequency f (Hz)


7. Monaural Mode (Rch)


Frequency f (Hz)

Gain and Phase Characteristics of Phase Shifter $(T_a = 25 \degree C)$


1. Movie Mode

2. Music Mode

3. Monaural Mode

★ Change of Frequency Characteristics Depending on External Parts

1. Setting of each phase shifter (pin 14, 15, 16, 17)

Change capacitance of external capacitors (pin 14, 15, 16, 17) on setting amount of phase shift of each phase shifter.

Pole frequency of each phase shifter can be set because the pole frequency is in inverse proportion to the capacitance of external capacitors. The amount of phase shift of each phase shifter is set by this pole frequency.

 $f_0 \propto 1/C$

f_O: Pole frequency

C: Value of external capacitor

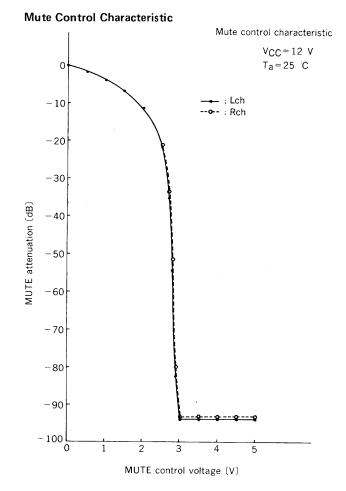
Phase shifter	Pin number	External Capacitor (Recommended value)	Pole frequency (Recommended value)	Setting range
PS1	14	0.1 μF	90 Hz	90 Hz ± 10 %
PS2	15	2200 pF	4 kHz	4 kHz ± 10 %
PS3	16	0.022	400 11-	400 11- 1 40 %
PS4	17	0.022 μF	400 Hz	400 Hz ± 10 %

2. Setting of HPF (High-pass filter) for monaural and surround signal (pin 5, 6)

Set the HPF for monaural and surround signal by changing the value of external capacitor and resistor connected to pins 5 and 6.

$$f_C = \frac{1}{2 \pi C (R/\!\!/Z)}$$


f_C: Cut-off frequency

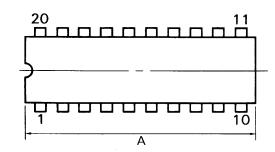

C: Value of external capacitor

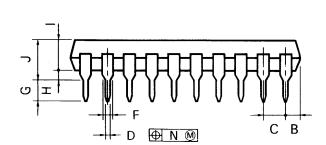
R: Value of external resistor

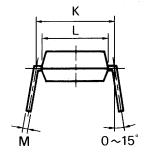
Z : Input impedance of pin 5 (61 k Ω ± 20 %)

Effect Adjustment Characteristic

Pin Function


PIN NO.	EQUIVALENT CIRCUIT	FUNCTION
1 (12.0 V)	Vcc	Power Supply pin
2 3 20 (5.2 V)	Mute circuit output 1 kΩ VCC 1 kΩ 1.0 mA	Pin 2: Rch output pin Pin 3: Lch output pin Pin 20: Rear channel output pin DC voltage of these pins: $\frac{1}{2}$ VCC - VBE
4 (1.2 V)	7 3 kΩ 3 kΩ 7 W VCC 3 kΩ 7 M 3.3 kΩ 7 M 3.3 kΩ 7 M 7 M 7 M 7 M 7 M 7 M 7 M 7 M 7 M 7	Adjuster pin to determine the time constant (frequency response characteristic in surround mode) of the phase shifter. Set the current flowing from pin 4. Note: R_r must be 3.3 k Ω .
5 (6.0 V)	V _{CC} V _{CC} V _{CC} V _{CC} V _{CC} V _{CC} S ₁ S ₁ M _A S ₂₂ M _Q S ₁ S ₁ M _A S ₁ M _A S ₁ S ₁ S ₁ M _A S ₁ S ₁ M _A S ₁ S ₁ S ₁ M _A S ₁	Pin for HPF in the monaural mode. Insert CR between pins 5 and 6. Time constant fc: fc = $1/2\pi C \times (R/Z)$ Z is the input impedance of pin 5: about 61 k Ω .


PIN NO.	EQUIVALENT CIRCUIT	FUNCTION
6 (6.0 V)	VCC VCC (6) (6) (126 μA (180	Pin for HPF in the monaural mode like the case of pin 5.
7 (6.0 V)	V _{CC} 20 kΩ 3 kΩ 7 20 kΩ 26 μA	The pin to connect the power supply ripple filter and has: Operating point bias: 1/2 V _{CC} . Impedance: About 10 kΩ.
8 9 (6.0 V)	1/2 V _{CC} V _{CC} 40 kΩ 3 kΩ 777 26 μΑ	Pin 8: Lch input pin Pin 9: Rch input pin The input impedance is about 40 $\mathrm{k}\Omega$.
10 (0.0 V)	GND	Pin for ground of device


PIN NO.	EQUIVALENT CIRCUIT	FUNCTION
11 12	VCC 10 kΩ 100 kΩ 100 kΩ	The pins select one of the surround modes. (Two-bit parallel control by pins 11 and 12) The input impedance of each pin is about 110 k Ω . The pin becomes low when it is opened.
13	VCC	Pin for surround effect adjustment.
14 15 16 17 (6.7 V)	Vcc 3 kΩ 180 μΑ 175 μΑ	Capacitor connection pin to determine the time constant of the phase shifter. Pin 14 is for music surround-sound. Pins 14 to 17 are for movie and monaural surround sound. DC voltage of these pins: \[\frac{1}{2} \] VCC + VBE
18 (6.0 V)	50 kΩ 3 kΩ VCC 26 μA	Matrix circuit DC offset absorption pin. The pin absorbs the offset generated from the phase shifter.

PIN NO.	EQUIVALENT CIRCUIT	FUNCTION
19	VCC VCC VCC 10 kΩ 19	Pin for mute circuit control.

20PIN PLASTIC DIP (400 mil)

P20C-100-400B

NOTES

- Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	27.94 MAX.	1.100 MAX.
В	2.54 MAX.	0.100 MAX.
С	2.54 (T.P.)	0.100 (T.P.)
D	0.50 ^{± 0.10}	0.020 - 0.004
F	1.2 MIN.	0.047 MIN.
G	3.5 ^{±0.3}	0.138 ^{±0.012}
Н	0.51 MIN.	0.020 MIN.
1	4.31 MAX.	0.170 MAX.
J	5.72 MAX.	0.226 MAX.
K	10.16 (T.P.)	0.400 (T.P.)
L	8.6	0.339
М	0.25 + 0.10	0.010 - 0.004
N	0.25	0.01

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

Type of Through Hole Device

 μ PC1891ACY: 20 pin plastic DIP (400 mil)

Soldering Process	Soldering Conditions
Wave Soldering (For leads only)	Solder temperature: 260 °C or lower. Flow time: 10 seconds or less.
Partial Heating Method	Pin temperature: 260 °C or lower. Time: 10 seconds or less.

Caution Do not jet molten solder on the surface of package.

27

(MEMO)

The application circuits and their parameters are for references only and are not intended for use in actual design-in's.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6