FREQUENCY DOWN CONVERTER FOR VHF to UHF BAND TV/VCR TUNER

DESCRIPTION

The μ PC3202GR is Silicon monolithic IC designed for TV/VCR tuner applications. This IC consists of a double balanced mixer (DBM), local oscillator, preamplifier for precscaler operation, IF amplifier, regulator, and so on. This one-chip IC covers a wide frequency band from VHF to UHF bands. This IC is packaged in 20-pin SSOP (Shrink Small Outline Package) suitable for surface mounting.

FEATURES

- VHF to UHF band operation.
- Low power dissipation $\mathrm{Vcc}=5 \mathrm{~V}$, Icc $=41 \mathrm{~mA}$ TYP.
- Packaged in 20-pin SSOP suitable for surface mounting

ORDERING INFORMATION

Part Number	Package	Package Style
μ PC3202GR-E1	20-pin plastic SSOP $(225$ mil $)$	Embossed tape 12 mm wide. 2.5 k/REEL Pin 1 indicates pull-out direction of tape

For evaluation sample order, please contact your local NEC office. (Part number for sample order: μ PC3202GR)

Caution electro-static sensitive device

[^0]
INTERNAL BLOCK DIAGRAM AND PIN CONFIGURATION (Top View)

PIN EXPLANATION

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin Voltage TYP. above: VHF mode below: UHF mode	Function and Explanation	Equivalent Circuit
1	UOSC collector (Tr.1)	$\begin{aligned} & 5.00 \\ & \hline 3.60 \end{aligned}$	Collector pin of UHF oscillator. Assemble LC resonator with 2 pin through 1 pF capacitor to oscillate with active feedback loop.	
2	UOSC base (Tr.2)	0.0 1.90	Base pin of UHF oscillator with balance amplifier. Connected to LC resonator through 360 pF feedback capacitor.	
3	UOSC base (Tr.1)	0.0 1.90	Base pin of UHF oscillator with balance amplifier. Connected to LC resonator through 360 pF feedback capacitor.	
4	UOSC collector (Tr.2) and UB	0.0	Collector pin of UHF oscillator with balance amplifier. Grounded through 6 pF capacitor. Double balanced oscillator with transistor 1 and transistor 2. And this pin is switch for VHF or UHF. VHF operation $=$ GND UHF operation $=5.0 \mathrm{~V}$	
5	GND	$\begin{array}{r} 0.0 \\ \hline 0.0 \end{array}$	GND pin for VHF and UHF oscillator	
6	OSC output	2.70 2.35	VHF and UHF oscillator signal output pin. In case of F/S tuner application, connected PLL symthesizer IC's input pin.	(6)
7	vosc base (Tr.1)	$\frac{1.95}{0.0}$	Base pin of VHF oscillator. Grounded through 10 pF capacitor.	
8	vosc base (Tr.2)	$\begin{aligned} & \hline 1.95 \\ & \hline 0.0 \end{aligned}$	Base pin of VHF oscillator. Assemble LC resonator with 10 pin to oscillate with active feedback loop.	
9	VOSC collector (Tr.2)	$\begin{aligned} & 3.60 \\ & \hline 5.00 \end{aligned}$	Collector pin of VHF oscillator. Connected to LC resonator through 3 pF feedback capacitor.	
10	Vcc	$\begin{aligned} & 5.00 \\ & 5.00 \end{aligned}$	Power supply pin.	

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Condition	Ratings	Unit
Supply voltage 1	Vcc		6.0	V
Supply voltage 2	UB		6.0	V
Power dissipation	PD_{D}	$\mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}^{* 1}$	466	mW
Operation temperature range	T_{A}		-20 to +80	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$		-55 to +150	${ }^{\circ} \mathrm{C}$

*1 Mounted on $50 \times 50 \times 1.6 \mathrm{~mm}$ double cupper epoxy glass board.

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage 1	Vcc	4.5	5.0	5.5	V
Supply voltage 2	UB	4.5	5.0	5.5	V
Operation temperature range	T_{A}	-20	+25	+80	${ }^{\circ} \mathrm{C}$

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Circuit Current 1	Icc1	@VHF, no input signal	*1	34.0	41.0	48.0	mA
Circuit Current 2	Icc2	@UHF, no input signal	*1	34.0	41.0	48.0	mA
Conversion Gain 1	CG1	$\mathrm{frF}=55 \mathrm{MHz}, \mathrm{PrF}^{\text {r }}=-30 \mathrm{dBm}$	*2	22.0	25.0	28.0	dB
Conversion Gain 2	CG2	$\mathrm{frF}=200 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-30 \mathrm{dBm}$	*2	22.0	25.0	28.0	dB
Conversion Gain 3	CG3	$\mathrm{frF}^{\text {a }}=470 \mathrm{MHz}, \mathrm{PrF}^{\text {a }}=-30 \mathrm{dBm}$	*2	22.0	25.0	28.0	dB
Conversion Gain 4	CG4	$\mathrm{frF}^{\text {a }}=470 \mathrm{MHz}, \mathrm{PrF}^{\text {a }}=-30 \mathrm{dBm}$	*2	26.0	29.0	32.0	dB
Conversion Gain 5	CG5	$\mathrm{frF}=800 \mathrm{MHz}, \mathrm{P}_{\text {RF }}=-30 \mathrm{dBm}$	*2	26.0	29.0	32.0	dB
Noise Figure 1	NF1	$\mathrm{ffF}=55 \mathrm{MHz}$	*3	-	10.5	13.0	dB
Noise Figure 2	NF2	$\mathrm{f}_{\text {RF }}=200 \mathrm{MHz}$	*3	-	10.5	13.0	dB
Noise Figure 3	NF3	$\mathrm{frF}=470 \mathrm{MHz}$	*3	-	10.5	13.0	dB
Noise Figure 4	NF4	$\mathrm{frF}=470 \mathrm{MHz}$	*3	-	9.5	12.0	dB
Noise Figure 5	NF5	$\mathrm{ffF}^{\text {a }}$ = 800 MHz	*3	-	10.0	13.0	dB
Maximum Output Power 1	Po(SAt) 1	$\mathrm{ffF}=55 \mathrm{MHz}$, PRF $=0 \mathrm{dBm}$	*2	4.0	6.0	-	dBm
Maximum Output Power 2	Po(SAt)2	$\mathrm{ffF}^{2}=200 \mathrm{MHz}, \mathrm{P}_{\text {RF }}=0 \mathrm{dBm}$	*2	4.0	6.0	-	dBm
Maximum Output Power 3	Po(Sat) 3	$\mathrm{ffF}^{\text {a }}=470 \mathrm{MHz}, \mathrm{PrF}^{\text {r }}=0 \mathrm{dBm}$	*2	4.0	6.0	-	dBm
Maximum Output Power 4	Po(SAT) 4	$\mathrm{frF}=470 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}$	*2	4.0	6.0	-	dBm
Maximum Output Power 5	Po(sat) 5		*2	4.0	6.0	-	dBm

*1 By measurement circuit 1
*2 By measurement circuit 2
*3 By measurement circuit 3

STANDARD CHARACTERISTICS (Reference Values) ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}$)

Parameter	Symbol	Test Conditions	Value for Reference	Unit
Third order intermodulation distortion 1	$1 \mathrm{M}_{3} 1$	VHF, fRF1 $=470 \mathrm{MHz}$, frF2 $=476 \mathrm{MHz}$, Pin $=-30 \mathrm{dBm}$ each, fosc $=515 \mathrm{MHz}$, Posc $=-10 \mathrm{dBm}$	55	dBc
Third order intermodulation distortion 2	$1 \mathrm{M}_{3} 2$	UHF, frF1 $=800 \mathrm{MHz}$, frF2 $=806 \mathrm{MHz}$, Pin $=-30 \mathrm{dBm}$ each, fosc $=845 \mathrm{MHz}$, Posc $=-10 \mathrm{dBm}$	46	dBc
1\% cross-modulation distortion 1	CM1	$\begin{aligned} & \mathrm{VHF}, \text { fRF }=470 \mathrm{MHz} \text {, fundes }=476 \mathrm{MHz}, \\ & \text { fosc }=515 \mathrm{MHz} \text {, } \mathrm{PRF}=-40 \mathrm{dBm}, \\ & \text { Posc }=-10 \mathrm{dBm}, \mathrm{AM} 100 \mathrm{kHz}, \\ & 30 \% \text { modulation, DES } / \mathrm{CM}=46 \mathrm{dBc} \quad * 1 \end{aligned}$	96	$\mathrm{dB} \mu$
1\% cross-modulation distortion 2	CM2	$\begin{aligned} & \text { UHF, frF }=800 \mathrm{MHz} \text {, fundes }=806 \mathrm{MHz}, \\ & \text { fosc }=845 \mathrm{MHz}, \text { PRF }=-40 \mathrm{dBm}, \\ & \text { Posc }=-10 \mathrm{dBm}, \text { AM } 100 \mathrm{kHz}, \\ & 30 \% \text { modulation, DES } / \mathrm{CM}=46 \mathrm{dBc} \quad * 1 \end{aligned}$	88	dB μ

[^1]
TYPICAL CHARACTERISTICS (Vcc = 5 V)

STANDARD CHARACTERISTICS (Vcc = 5 V)

frf vs. CM

STANDARD CHARACTERISTICS ($\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, on Application circuit example)

frf vs. CG, NF

Pin vs. Pout

frF vs. CM

INPUT IMPEDANCE (By measurement circuit 5)

<VRF INPUT: 17 PIN>

$\nabla 1 \quad 45 \mathrm{MHz}$
$890.25 \Omega-235.69 \Omega$
$\nabla 2 \quad 200 \mathrm{MHz}$
$357.45 \Omega-356.78 \Omega$
$\nabla 3 \quad 470 \mathrm{MHz}$
$95.016 \Omega-179.81 \Omega$
$\nabla 1 \quad 400 \mathrm{MHz}$
$100.35 \Omega-190.80 \Omega$
$\nabla 2 \quad 600 \mathrm{MHz}$
$40.156 \Omega-103.16 \Omega$
$\nabla 3 \quad 890 \mathrm{MHz}$
$12.047 \Omega-46.439 \Omega$

OUTPUT IMPEDANCE (By measurement circuit 5)

<IF OUTPUT: 11 PIN>

$\nabla 1 \quad 45 \mathrm{MHz}$
$89.238 \Omega-49.805 \Omega$

MEASUREMENT CIRCUIT 1

MEASUREMENT CIRCUIT 2

MEASUREMENT CIRCUIT 3

MEASUREMENT CIRCUIT 4

APPLICATION CIRCUIT EXAMPLE

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

ILLUSTRATION OF THE EVALUATION BOARD FOR APPLICATION CIRCUIT EXAMPLE (Surface)

ILLUSTRATION OF THE EVALUATION BOARD FOR APPLICATION CIRCUIT EXAMPLE (Back side)

Notes:
. $\square \prod \square$ should be removed
.$\circ \bigcirc$:Through holes

PACKAGE DIMENSIONS

* 20 PIN PLASTIC SSOP (225 mil) (UNIT: mm)

detail of lead end

NOTE Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

NOTE ON CORRECT USE

(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesires oscillation).
(3) Keep the track length of the ground pins as short as possible.
(4) A low pass filter must be attached to Vcc line.
(5) A matching circuit must be externally attached to output port.

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.
Please consult with our sales officers in case other soldering process is used or in case soldering is done under different conditions.

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
$\mu \mathrm{PC} 3202 \mathrm{GR}$

Soldering Process	Soldering Conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$ or below, Reflow time: 30 seconds or below ($210^{\circ} \mathrm{C}$ or higher), Number of reflow process: 3, Exposure limit ${ }^{+1}$ None)	IR35-00-3
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$ or below, Reflow time: 40 seconds or below ($200^{\circ} \mathrm{C}$ or higher), Number of reflow process: 3, Exposure limit ${ }^{+1}$ None)	VP15-00-3
Partial heating method	Terminal temperature: $300^{\circ} \mathrm{C}$ or below, Flow time: 3 seconds or below, Exposure limit ${ }^{+1}$ Note	

*1 Exposure limit before soldering after dry-pack package is opened.
Storage conditions: $25^{\circ} \mathrm{C}$ and relative humidity at 65% or less.

Caution Do not apply more than single process at once, except for "Partial heating method".

NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

[^1]: *1 By measurement circuit 4

