DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC7073$

μ PC7073 ANALOG SUBSCRIBER LINE LSI (BS-SLIC)

The μ PC7073 is a BS-SLIC that can be used in analog subscriber circuits such as private branch exchangers (PBXs) and switching equipment for central offices. It features two of the functions required for analog subscriber circuits: subscriber line feed control and subscriber line supervision.

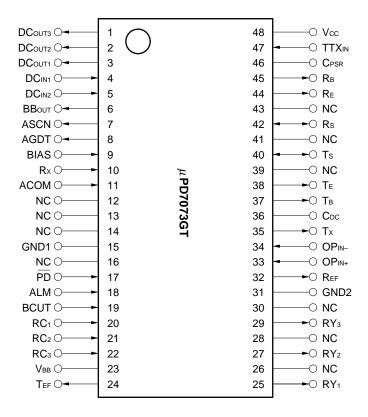
Use of the μ PC7073 in combination with a digital CODEC (μ PD9903) can reduce the number of components required in analog subscriber circuits.

FEATURES

- · Single-chip, monolithic LSI (bipolar)
- Constant-resistance feed or semi constant-current feed Note
- 200-Ω feed, 400-Ω feed, or Tip-to-Ring pin feedout status (HIGH and WET)
- · On-chip metering signal superposing circuit
- · On-hook sending and receiving
- Loop detection Note
- Ground detection and ground-fault/power contact protection Note
- Three on-chip relay drivers (flyback prevention diode must be externally provided)
- Two power supply voltages (–48 V and +5 V)
- Low power consumption: 110 mW (TYP., when on hook)

Note Requires μ PD9903.

ORDERING INFORMATION


Part Number	Package
μ PC7073GT	48-pin plastic shrink SOP (375 mil)

The information in this document is subject to change without notice.

PIN CONFIGURATION

48-pin plastic shrink SOP (375 mil)

ACOM : ANALOG COMMON VOLTAGE RB : RING BASE

AGDT : ANALOG GROUND DETECTION SIGNAL OUT RC1-RC3 : RELAY CONTROL IN

ALM : ALARM IN RE : RING EMITTER

ASCN : ANALOG LOOP DETECTION SIGNAL OUT REF : RING EMITTER PROTECT FEED

BBOUT : VBB VOLTAGE INFORMATION OUT RS : RING SENSE

SBOOT . VBB VOLTAGE INFORMATION OUT . KING SENSE

BCUT : BATTERY FEED CUT SIGNAL IN Rx : SIGNAL RECEPTION IN

BIAS : BIAS LEVEL RY1-RY3 : RELAY DRIVER OUT

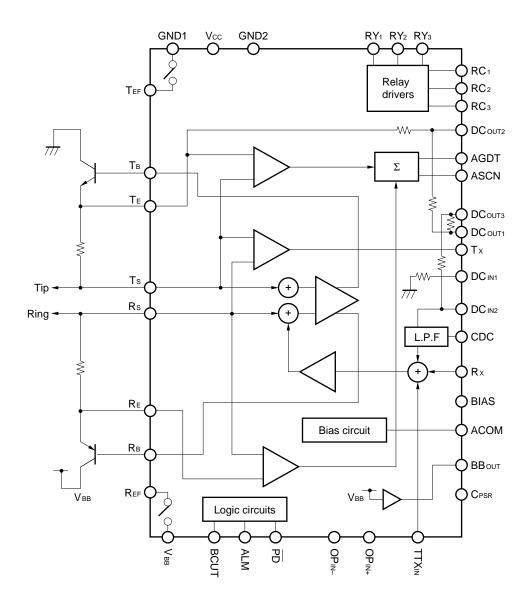
CDC : DC FEEDBACK CAPACITOR TB : TIP BASE

CPSR : POWER SUPPLY REJECTION CAPACITOR TE : TIP EMITTER

DCIN1, DCIN2 : DC FEEDBACK CONTROL IN TEF : TIP EMITTER PROJECT FEED

DCout1-DCout3: DC FEEDBACK CONTROL OUT Ts : TIP SENSE

OCCURRED OUT TO THE SENSE


GND1, GND2 : GROUND TTXIN : TELETAX SIGNAL IN

NC : NO CONNECTION Tx : TRANSSMISSION OUTPUT

OPIN+ : TELETAX SIGNAL CANCEL IN (+) VBB : NEGATIVE POWER SUPPLY (-48 V)

OPIN- : TELETAX SINGAL CANCEL IN (-) Vcc : POSITIVE POWER SUPPLY (+5 V)
PD : POWER DOWN CONTROL IN

BLOCK DIAGRAM

CONTENTS

1.	PIN FUNCTIONS	5
2.	USE CAUTIONS	7
	ELECTRICAL SPECIFICATIONS	
	3.2 Combined specifications with µPD9903	
4.	SYSTEM APPLICATION EXAMPLE USING μ PC7073 AND μ PD9903	14
5.	PACKAGE DRAWING	15
6	RECOMMENDED SOLDERING CONDITIONS	16

1. PIN FUNCTIONS

Number	Pin Name	I/O	Function				
1-3	DCоит1-DCоит3	0	DC feedback control output	[to the μPD9903's pin 48-46]			
4, 5	DCIN1, DCIN2	I	DC feedback control input	[to the μPD9903's pin 45, 44]			
6	ВВоит	0	V _{BB} voltage information output	[to the μPD9903's pin 43]			
7	ASCN	0	Tip-Ring difference current detection signal output	[to the μPD9903's pin 42]			
8	AGDT	0	Tip-Ring sum current detection signal output	[to the μPD9903's pin 41]			
9	BIAS	I	Bias level input. Connect to μPD9903's A _{IN} pin	[to the μPD9903's pin 40]			
10	Rx	I	Receiving input for 4W side	[to the μ PD9903's pin 39]			
11	ACOM	I	Signal reference voltage (2.4 V TYP) input for 4W side	e [to the μ PD9903's pin 37, 38]			
12-14, 16, 26, 28, 30, 39, 41, 43	NC	-	No-connection pins. Leave these pins unconnected	I.			
15	GND1	-	Ground pin 1, for circuit grounding				
17	PD	I	Power-down control H: Power-up L: Power-down TTL level	[to the μ PD9903's pin 32]			
18	ALM	I	Ground-fault/power line contact protection mode sel H: Protect mode L: Normal feed TTL level	lect input [to the μ PD9903's pin 31]			
19	BCUT	I	Feed-out select input H: Feed-out L: Normal feed TTL level	[to the μ PD9903's pin 30]			
20	RC ₁	I	Relay control for ringer transmission, high active	[to the μ PD9903's pin 29]			
21	RC ₂	I	Relay control for line test, high active	[to the μ PD9903's pin 28]			
22	RC₃	I	Relay control for network test, high active	[to the μ PD9903's pin 27]			
23	Vвв	_	Negative power supply (-48 V)				
24	TEF	0	Feed resistor pin connection for Tip side during ground detection	und-fault/power line contact			
25	RY ₁	0	Relay control for ringer transmission, open collector				
27	RY ₂	0	Relay control for line testing, open collector				
29	RY ₃	0	Relay control for network testing, open collector				
31	GND2	-	Ground pin 2, relay driver				
32	Ref	0	Ring feed resistor pin connection for ground-fault/pov	wer line contact detection			
33	OP _{IN+}	I	TTX (Teletax) signal cancel circuit input pin (+)				
34	OP _{IN} -	I	TTX signal cancel circuit input pin (-)				
35	Tx	0	Transmission output for 4W side. Connect with BIA	S pin via CAC capacitor.			
36	Срс	-	Connect to DC feedback capacitor Connect Cpc capacitor to this pin				
37	Тв	0	Tip-side auxiliary power transistor base connection	pin			
38	TE	0	Tip-side feed amplifier output pin. Connect with Ts	pin via R _{FT} resistor.			
40	Ts	I/O	Tip pin for 2W side				
42	Rs	I/O	Ring pin for 2W side				

Number	Pin Name	I/O	Function
44	RE	0	Ring-side feed amplifier output pin. Connect with Rs pin via RFR resistor.
45	Rв	0	Ring-side auxiliary power transistor base connection pin
46	Cpsr	_	Connect a capacitor for power supply noise eliminator
47	TTXIN	I	TTX signal input pin
48	Vcc	_	Positive power supply (+5 V)

2. USE CAUTIONS

(1) Combined characteristics of μ PC7073 and μ PD9903

- The μ PC7073 is designed to be used in combination with the μ PD9903. Therefore, first half of the electrical characteristics described below are ratings for the μ PC7073 as a discrete unit while the second half are combined ratings that include the μ PD9903.
- Subscriber circuit constants that are determined by factors such as termination impedance are configured to enable setting by external order parameters. Consequently, input of an order that is not suitable for the target impedance may result in failure to obtain the required characteristics.

(2) Absolute maximum ratings

Application of voltage or current in excess of the absolute maximum ratings may result in damage. Be especially cautious about surges, etc.

(3) Load of by-pass capacitor

Because the μ PC7073 and μ PD9903 use several internal high-frequency operational amplifiers, high power supply impedance can cause instability (such as oscillation) in these internal operational amplifiers. To suppress such instability and eliminate power supply noise, connect by-pass capacitors (CACOM = approx. 0.1 μ F) having superior high frequency characteristics as close as possible to the μ PC7073's power supply pins (VBB and Vcc) and the μ PD9903's power supply pins (AVDD and DVDD).

(4) Addition of ACOM pin connection capacitor

The voltage of the ACOM pin between the μ PC7073 and μ PD9903 is the signal source reference voltage for the μ PC7073. Superposition of noise on this pin may have adverse effects on transmission characteristics. Therefore, make the wires between the ACOM pin and the two LSIs as short as possible, and connect capacitors (Cacom = approx. 0.1 μ F) having superior high frequency characteristics as close as possible to the pins.

(5) Overcurrent prevention measures

Due to its structure, power to the μ PC7073 must first be supplied to a low-voltage potential (V_{BB}). Accordingly, if power is supplied first to a power supply pin other than V_{BB}, an overcurrent will flow within the μ PC7073 (an overcurrent will not flow if power is input to all power supply pins).

Therefore, if feeding to a power supply pin other than V_{BB} first, connect an external diode and limiting resistor (rated at several Ω) in the directions described below.

- Reverse-bias direction between VBB pin and Vcc pin.
- Reverse-bias direction between VBB pin and GND.
- · Reverse-bias direction between Vcc pin and GND.

3. ELECTRICAL SPECIFICATIONS

3.1 Discrete unit ratings

Absolute maximum ratings (T_A = +25 $^{\circ}$ C)

Parameter	Symbol	Conditions	Rating	Units
Power supply voltage	V _{ВВ}	Including spike voltage	-63 to +0.3	V
	Vcc	Including spike voltage	-0.3 to +7.0	
	Vасом	ACOM pin	-0.3 to Vcc + 0.3	
Input voltage	VINO	Rx pin	-0.3 to Vcc + 0.3	
	V _{IN1}	Ts, Rs, Te, and Re pins	V _{BB} - 0.3 to V _{CC} + 0.3	
	V _{IN2}	TTX _{IN} pin	To be defined	
Logic input voltage	V _{IN3}	BCUT, ALM, PD, RC1, RC2, and RC3 pins	-0.3 to Vcc + 0.3	
Relay driver output current	Іоь	RY ₁ , RY ₂ , and RY ₃ pins	40	mA
Power consumption	Рт	Thermal resistance: 160 °C/W, T _A = 70 °C	1	W
Ambient operating temperature	Та		0 to 70	°C
Storage temperature	Tstg		-65 to +150	

Caution If the absolute maximum rating for any of the above parameters is exceeded even momentarily, it may adversely affect the quality of this product. In other words, these absolute maximum ratings have been set to prevent physical damage to the product. Do not use the product in such a way as to exceed any of these ratings.

Recommended operating conditions

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Units
Power supply voltage	Vвв			-58	-48	-42	V
	Vcc			4.75	5.0	5.25	
	Vасом	ACOM pin		2.38	2.4	2.42	
Ambient operating temperature	TA			0	25	70	°C
High level input voltage	ViH	BCUT, ALM,	PD, RC ₁ , RC ₂ , and RC ₃ pins	2.0		Vcc	V
Low level input voltage	VIL			0		0.8	
Digital input rise and fall times	tr	BCUT, ALM,			200	ns	
	tF					200	
Rx drive impedance				0		50	Ω
Rx-ACOM offset voltage				-0.1		+0.1	V
Loop resistance (line resistance	R∟	V _{BB} = -51 V	200 $\Omega \times$ 2 feeding modes			1900	Ω
+ termination resistance)			400 $\Omega \times 2$ feeding modes			1500	
Terminal leakage current during on-hook transmission	Ion-leak			0		8	mA
AC inductive current	llong	f = 60 Hz, 2Pw-Tr Note During loop detection (one line), during ground detection (one line)				5.0	mArms

Note Pw-Tr is a power transistor for feeding.

DC Characteristics (VBB = -42 to -58 V, Vcc = 5 V \pm 0.25 V, TA = 0 to 70 °C, combined characteristics with μ PD9903)

Parameter	Symbol	Conditions				TYP.	MAX.	Units
On-hook supply current 1	І вв1	On-hook, including IPw-	On-hook, including I_{Pw-Tr} Note $I_L = 0 \text{ mA}$			1.9		mA
	Icc1	long = 0 mA,		$V_{BB} = -48 \text{ V}$		1		
	1001	Vcc = +5 V				· ·		
Off-hook supply current 1	Івв2	Off-hook, not including	_{Pw-Tr} Note	IL = 20 mA		4.3		
	Icc2	liong = 0 mA,		$V_{BB} = -48 \text{ V}$		2.0		
				Vcc = +5 V				
On-hook supply current 2	Іввз	On-hook, including IPw-Tr	Note	$I_L = 0 \text{ mA}$		2.3	2.9	
	Іссз	$I_{long} = 0 \text{ mA},$		V _{BB} = −58 V		1.3	1.7	
				Vcc = +5.25 V				
Off-hook supply current 2	ВВ4	Off-hook, not including	_{Pw-Tr} Note	I _L = 20 mA		4.4	5.5	
	Icc4	liong = 0 mA,		$V_{BB} = -58 \text{ V}$		2.2	2.8	
			N. c.	Vcc = +5.25 V				
Power current during	І вв6	On-hook, including IPw-Tr	Note	I∟ = 0 mA		3	3.9	
on-hook transmission	Icc6	liong = 0 mA,		V _{BB} = −58 V		2.1	2.7	
				Vcc = +5.25 V				
ACOM input current	Іасом	ACOM pin	On-hook		-100	-16	+100	μΑ
		B W 04W	Off-hook		-100	0	+100	
Rx input current	Irx	Rx, V _{RX} = 2.4 V			8	12	16	^
Relay driver input current	Іін	$V_1 = 5.0 \text{ V}$ For each RC ₁ , RC ₂ , an	nd RC3 pins			1.0	1.5	mA
Relay driver output voltage	VoL	IoL = 35 mA For each RY ₁ , RY ₂ , an	d RY3 pins				+1.1	V
Digital pin high level	Ін	Vi = 2.0 V					0.5	mA
input current		For each BCUT, ALM,	PD, RC ₁ , R	C ₂ , and RC ₃ pins				
Digital pin low level input current	lıL	V _I = 0.0 V For each BCUT, ALM,	PD, RC ₁ , R	C ₂ , and RC ₃ pins		50		μΑ
Control input voltage		BCUT : I∟ = 50 mA →	I _L ≤ 1 m/	4	2.0			V
		: I∟ = 50 mA →						
		: I∟ = 50 mA →		nA				
		BCUT, $I_L = 50 \text{ mA} \rightarrow -I_L \times 90 \%$					0.8	
DC feed resistance	R _{BF}	200 Ω feed				200 400	220 440	Ω
High and wet impedance	RH&W	400 Ω feed RL = 1900 Ω AC/DC			100	700	7-10	kΩ
Ground-fault/power contact drooping current		$V_{BB} = -48 \text{ V}$ $R_{TE5K}/R_{RE5K} = 3.6 \text{ k}\Omega$			12.1	13.1	14.1	mA

 $\label{eq:Note_loss} \textbf{Note} \quad I_{\text{Pw-Tr}} \text{ is the current to the power transistor for feeding.}$

3.2 Combined specifications with $\mu PD9903$

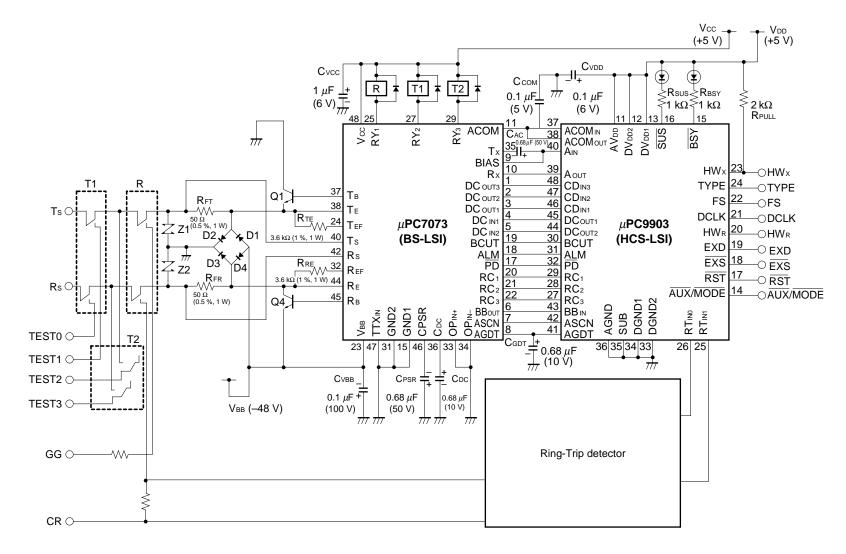
DC characteristics

 μ PC7073 (VBB = -42 to -58 V, Vcc = 5 V \pm 0.25 V, TA = 0 to 70 °C, 18 \leq IL \leq ILMAX (mA)) μ PD9903 (TA = 0 to 70 °C, Vdd = 5 V \pm 0.25 V, Vdd = VAG = 0 V, fdclk = 2048 kHz)

Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Units
DC feed resistance	R _{BF}	200 Ω feed		180	200	220	Ω
		400 $Ω$ feed		360	400	440	
Minimum loop unit	ILMIN	V _{BB} = −51 V	200 Ω feed	21.7	22.2	22.6	mA
		R _L = 1900 Ω	400 Ω feed	18.2	18.8	19.3	
Maximum current setting	ILMAX	ILMAX = 76 mA setting	200 Ω feed	70	76	82	mA
			400 Ω feed	50	55	60	
		ILMAX = 45 mA setting		40	45	50	
		ILMAX = 35 mA setting		31	35	39	
Pin voltage during on-hook	VTS	Normally on-hook, between Tip and GND,	Normally on-hook, between Tip and GND, VBB = -48 V			2.85	V
	VRS	Normally on-hook, between Ring and V _{BB} ,	V _{BB} = -48 V	3.05	3.35	3.65	
	VTS	On-hook transmission, between Tip and GND,	V _{BB} = -48 V	2.25	2.55	2.85	
	VRS	On-hook transmission, between Ring and V _{BB} ,	V _{BB} = -48 V	3.05	3.35	3.65	
Voltage between lines during on-hook	VTS	V _{BB} = -48 V		V _{ВВ} - 7.0	V _{ВВ} – 5.9	V _{BB} – 5.0	V
Supervisory control - VBB fault voltage	Vввғ			32	35	38	V

Parameter	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Units
Loop detection operating resistance (during normal transmission)	Ron1	Includes termination resistance	200 Ω feed 400 Ω feed			2500 2100	Ω
Loop detection non-operating resistance (during normal transmission)			200 Ω feed 400 Ω feed	3900 3500			
Loop detection operating resistance (during on-hook transmission)	Ron2	Includes termination resistance	200 Ω feed 400 Ω feed			1900 1500	Ω
Loop detection non-operating resistance (during on-hook transmission)			200 Ω feed 400 Ω feed	2840 2440			
Loop release non-operating resistance	Rоnз	Includes termination resistance	$200~\Omega$ feed $400~\Omega$ feed			2960 2560	Ω
Loop release operating resistance			$200~\Omega$ feed $400~\Omega$ feed	4540 4140			
Ground detection 1 (C/O) operating resistance	Ron4	Includes termination re	esistance			5.2	kΩ
Ground detection 1 (C/O) non-operating resistance				20			
Ground-fault/power line	Ron6	Includes termination	I _{LMAX} = 45/76 mA			340	Ω
contact detection operating resistance		resistance Off-hook stage	I _{LMAX} = 35 mA			480	
Ground-fault/power line		Includes termination	ILMAX = 45/76 mA	870			Ω
contact detection non- operating resistance		resistance	I _{LMAX} = 35 mA	1130			
Ground-fault/power line contact release non-operating resistance	Ron7	Includes termination re	esistance			1.4	kΩ
Ground-fault/power line contact release operating resistance				10			

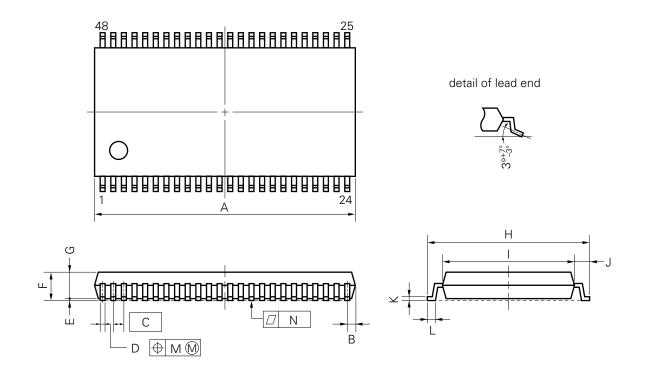
Note The above values are resistance-converted values.


Transmission Characteristics

 μ PC7073 (V_{BB} = -42 to -58 V, V_{CC} = 5 V \pm 0.25 V, T_A = 0 to 70 °C, 18 \leq I_L \leq I_{LMAX} (mA)) μ PD9903 (T_A = 0 to 70 °C, V_{DD} = 5 V \pm 0.25 V, V_{DG}= V_{AG} = 0 V, f_{DCLK} = 2048 kHz)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Units	
Insertion loss	IL	A-D input signal 0 dBm0 1 kHz		-0.45	0.0	+0.45	dB
		D-A input signal 0 dBm0 1 kHz		-0.45	0.0	+0.45	
Transfer loss frequency F _{RX} characteristics		A-D Reference input signal 1015 Hz 0 dBm0	60 Hz 200 Hz 300 Hz 400 to 3000 Hz 3200 Hz	24.0 0.6 -0.15 -0.15 -0.15		- 2.0 +0.21 +0.15 +0.65	dB
	FRR	D-A Reference input signal 1015 Hz 0 dBm0	3400 Hz 60 Hz 200 Hz 300 Hz 400 to 3000 Hz 3200 Hz 3400 Hz	0.2 0.2 0.1 -0.15 -0.15 -0.15 0.2		0.8 4.0 1.0 +0.25 +0.15 +0.65 0.8	
Gain tracking (tone method)	GTx	A-D Reference input signal -10 dBm0 f = 700 to 1100 Hz	+3 to -40 dBm0 -50 dBm0 -55 dBm0	-0.2 -0.5 -1.0		+0.2 +0.5 +1.0	dB
	GTR	D-A Reference input signal -10 dBm0 f = 700 to 1100 Hz	+3 to -40 dBm0 -50 dBm0 -55 dBm0	-0.2 -0.4 -0.8		+0.2 +0.4 +0.8	
Return loss	RL	Input signal 0 dBm0 $Z_T = 600 \Omega + 2.16 \mu F$	300 Hz 500 to 2000 Hz 2000 to 3400 Hz	16 20 16			dB
Echo attenuation	TBRL	Input signal 0 dBm0 $Z_T = 600 \Omega + 2.16 \mu F$	300 Hz 500 to 2500 Hz 3400 Hz	18 22 18			dB
Transmit channel total power distortion ratio (tone method)	SDx	A-D Input signal f = 700 to 1100 Hz	+3 to -30 dBm0 -40 dBm0 -45 dBm0	36 30 25			dB
	SDR	D-A Input signal f = 700 to 1100 Hz	+3 to -30 dBm0 -40 dBm0 -45 dBm0	36 30 25			

Parameter	Symbol		C	Conditions	MIN.	TYP.	MAX.	Units
Absolute delay characteristics	DA	A-A inpu	t signal	0 dBm0			540	μs
Absolute delay distortion frequency characteristics	Do	A-A		500 Hz 600 HZ 1000 to 2600 Hz 2800 Hz			1400 700 200 1400	
Intermodulation (2 Tone)	IMD	f1, f2:	A-D input signal f1, f2: 300 to 3400 Hz -4 to -21 dBm0 Measured signal: 2 × f1 - f2 level (2 × f1 - f2) vs level (f1, f2)		44.0			dB
		f1, f2:	D-A input signal f1, f2: 300 to 3400 Hz -4 to -21 dBm0 Measured signal: 2 × f1 - f2 level (2 × f1 - f2) vs level (f1, f2)		44.0			
Single frequency noise	NsF	D-A PAD level set at 0 dB Measured signal up to f = 256 kHz				-54	dBm0	
Deviation in gain setting for transmit channel	ΔDGSx			A-D reference set value +7.5 to +3.0 dB +3.0 to -3.5 dB	-0.2 -0.1		+0.2 +0.1	dB
Gain setting deviation for receive chanel	ΔDGSR			0-A reference set value 0.0 to -5.0 dB -5.0 to -8.5 dB	-0.1 -0.2		+0.1 +0.2	
Idle circuit noise	ICN ₂₄	2W-4W	A-law	Psophometric weighted			-67	dBm0p
			μ-law	C message weighted			23	dBrnc0
	ICN ₄₂	4W-2W	A-law	Psophometric weighted			-76	dBm0p
			μ-law	C message weighted			14	dBrnc0
Line to ground balance attenuation	LB	$R_F = 50~\Omega$ f = 300 to 600 Hz Relative accuracy = 0.5 % f = 600 to 3400 Hz		42 48			dB	
V _{BB} -PSRR (tone method)	PSRR₿	I _L = 20 mA		30 -5			dB	
Vcc-PSRR (tone method)	PSRRc	IL = 20 mA		25 5				
AC induction noise	LFI	IL = 0 m/	I _L = 0 mA				43	dBrnc
resistance		I _L = 20 m	IL = 20 mA				20	



SYSTEM APPLICATION **EXAMPLE** USING μ PC7073 AND μ PD9903

Z

5. PACKAGE DRAWING

48 PIN PLASTIC SHRINK SOP (375 mil)

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

		P48GT-65-375B-1
ITEM	MILLIMETERS	INCHES
А	16.21 MAX.	0.639 MAX.
В	0.63 MAX.	0.025 MAX.
С	0.65 (T.P.)	0.026 (T.P.)
D	0.30±0.10	0.012 ^{+0.004} _{-0.005}
Е	0.125±0.075	0.005±0.003
F	2.0 MAX.	0.079 MAX.
G	1.7±0.1	0.067±0.004
Н	10.0±0.3	0.394+0.012
	8.0±0.2	0.315±0.008
J	1.0±0.2	0.039+0.009
K	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.002}$
L	0.5±0.2	0.020+0.008
М	0.10	0.004
Z	0.10	0.004

6. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the conditions recommended below.

For details of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended, please contact your NEC sales representative.

SURFACE MOUNT TYPE

μ PC7073GT: 48-pin plastic shrink SOP (375 mil)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C Duration: 30 sec. max. (210 °C or above) Number of times: 1	IR35-00-1
Pin heating	Pin temperature: 300 °C max. Duration: 3 sec. max. (per side of device)	_

Note For the storage period after unpacking from the dry-pack, storage conditions are max. 25 °C, 65 % RH.

Notes on Handling Devices against Electrostatic Discharge

Caution When handling this device, special care against electrostatic discharge (ESD) must be taken. If a strong ESD is applied to this device, the junction parts of the internal transistors may be destroyed. Therefore, when transporting or storing this device, be sure to use the conductive tray or magazine case in the packing provided by NEC, or use a conductive buffer material or metal case. Also be sure to ground the operator's body and any tools that may enter in contact with the device during assembly processes. Never put or leave the device on a plastic board or table, and do not touch the device pins directly by hand.

[MEMO]

[MEMO]

[MEMO]

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.