PRELIMINARY DATA SHEET

8-Bit Parallel I/O Calendar Clock

The μ PD4992 is a CMOS integrated circuit which outputs 8 -bit parallel time and calendar data in a system in which a microprocessor is employed. The $\mu \mathrm{PD} 4992$ operates at 32.768 kHz and provides year, month, day of month, day of week, hour, minute, and second data to a system. The μ PD4992 internally contains a voltage regulator so that low power consumption operation and high accuracy are realized even if the supply voltage varies. The μ PD4992 uses the 8 -bit bus to facilitate interfacing with a microprocessor.

FEATURES:

- Internal counter for time (hour, minute, second), and calendar (leap year, year, month, day of month, day of week)
- Super low power consumption (IDD $=2 \mu \mathrm{~A} M A X$. at $\mathrm{V} D \mathrm{~m}=2.4 \mathrm{~V}$)
- Automatic determination of leap year, manual setting possible
- 12 hour/24 hour mode selectable
- 8-bit parallel input/output in BCD data format
- 12 kinds of interval timer output (can be used as watchdog timer)
- Internal voltage detection circuit for automatic determination of battery run-down
- High accuracy

ORDERING INFORMATION:

Order Code	Package
μ PD4992GX	20-pin plastic DIP (300 mil)
μ PD4992GS	20-pin plastic SOP (300 mil)
μ PD4992GS-T1, T2	20-pin plastic SOP (300 mil) Provided on adhesive tape
μ PD4992GS-E2	20-pin plastic SOP (300 mil) Provided on embossed carrier tape

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Vss = 0 V)

Item	Symbol	Ratings	Unit
Supply voltage	V_{DD}	-0.3 to 7.0	V
Input voltage range	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VDD}_{\mathrm{D}}+0.3$	V
Output pin withstand voltage	$\mathrm{V}_{\text {out }}$	7.0	V
Low level output current (N ch Open Drain)	lout	30	mA
Operating temperature range	$\mathrm{T}_{\text {opt }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

(Vss $=0 \mathrm{~V}, \mathrm{f}=32.768 \mathrm{kHz}, \mathrm{CG}=\mathrm{Cd}=20 \mathrm{pF}, \mathrm{Ci}_{\mathrm{i}}=20 \mathrm{k}$ ohms, $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$)

Item	Symbol	Condition	MIN.	TYP.*	MAX.	Unit
Operating voltage range	VDD		2.4		5.5	V
High level input voltage	VIH		0.7 Vdd		VDD	V
Low level input voltage	VIL		Vss		0.3 VDD	V
Supply current	IdD	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {ss }}$		2	6	$\mu \mathrm{A}$
Supply current	IdD	$\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$		0.6	2	$\mu \mathrm{A}$
Input leakage current	ILI	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {dD }}$ or $\mathrm{V}_{\text {SS }}$		$\pm 1 \times 10^{-5}$	± 1.0	$\mu \mathrm{A}$
High level output voltage	V OH	$\mathrm{Ioh}^{\prime}=-1.0 \mathrm{~mA}$	2.4	4.3		V
Low level output voltage	Vol1	$\mathrm{lol}=2.0 \mathrm{~mA}$		0.1	0.4	V
Low level output voltage	Vol2	$\mathrm{loz}=1.0 \mathrm{~mA}$ (N ch Open Drain)			0.4	V
High level leakage current	ILOH	TPout $=\mathrm{V}_{\text {DD }}$ (N ch Open Drain)		4×10^{-5}	1.0	$\mu \mathrm{A}$

*: $\mathrm{Ta}=+25^{\circ} \mathrm{C}$

SWITCHING CHARACTERISTICS

WRITE CYCLE (unless otherwise specified $V D D=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$)

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Cycle time	twc		150			
$\overline{\mathrm{CS}} \mathrm{-WR}$ reset time	tow		120			
Address $-\overline{W R}$ reset time	taw		120			
Address $-\overline{W R}$ set up time	tas		0			
Write pulse width	twp		90			
Address hold time	twr		20			
Input data set up time	tow		50			
Input data hold time	toh		0			
$\overline{W R}$ - output floating time	twhz					

WRITE CYCLE TIMING WAVEFORMS 1

WRITE CYCLE TIMING WAVEFORMS $2(\overline{R D}=\mathrm{VIL})$

READ CYCLE (unless otherwise specified $V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$)

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Cycle time	tRC		150			
Address access time	tAA				150	
$\overline{\mathrm{CS}}-$ access time	tacs				150	
$\overline{\mathrm{RD}}-$ output delay time	toe				75	
$\overline{\mathrm{RD}}-$ output delay time	toLz		5			
$\overline{\mathrm{RD}}$ - output delay time	tohz				50	
Output hold time	toh		15			
$\overline{\mathrm{CS}}-$ output set time	tcLz		10			
$\overline{\mathrm{CS}}-$ output floating time	tchz		5			

READ CYCLE TIMING WAVEFORMS 1

READ CYCLE TIMING WAVEFORMS 2

PIN FUNCTION

Pin symbol	Pin name	Pin number	Function
$\overline{\mathrm{CS}} 1$	Chip select input	2	Internal register can be accessed when $\overline{\mathrm{CS}}_{1}=\mathrm{L}$ and $\mathrm{CS}_{2}=\mathrm{H}$
CS_{2}	Chip select input	17	
$\overline{\mathrm{WR}}$	Write signal input	3	Writes the contents of data bus to the register selected by address input at the rising edge
$\overline{\mathrm{RD}}$	Read signal input	7	Outputs the contents of the register selected by address input to the data bus at the rising edge
D_{0} to D_{7}	Data input/output	8, 9, 11 to 16	Data input/output bus
A_{0} to A_{2}	Address input	4 to 6	Address input to select internal register
TP	Timing pulse output	1	Interval signal and timing pulse output (N ch open drain output)
XIN	Crystal resonator connection pin	19	Crystal resonator and capacitor are connected to these pins.
Xout	Crystal resonator connection pin	18	
VdD	Power supply pin	20	2.4 V to 5.5 V
Vss	GND	10	Connect to GND

External components (crystal resonator, capacitors) must be located as close as the IC, and separated as far as from high speed clock wiring.

REGISTER - ADDRESS CORRESPONDENCE TABLE

ADDRESS		Register contents							
HEX	BIN	b7	b6	b5	b4	b3	b2	b1	b0
OH	000B	10s second digit				1s second digit			
1H	001B	10s minute digit				1s minute digit			
2 H	010B	12/24H	$\overline{\text { AM/PM }}$	10s hour digit		1s hour digit			
3H	011B	Leap year control		Leap year counter		Day of week digit			
4H	100B	10s day digit				1 s day of month digit			
5H	101B	10s month digit				1s month digit			
6H	110B	10s year digit				1s year digit			
7H	111B	Mode register				Control register			

$\overline{\mathrm{AM}} / \mathrm{PM}$ flag (R/W) : In 12 hour mode, 0 indicates $A M$, and 1 indicates $P M$.
Always 0 in 24 hour mode.
$12 / \overline{24} \mathrm{H}$ flag (R/W) : 0 indicates 24 hour mode, and 1 indicates 12 hour mode.

LEAP YEAR CONTROL REGISTER (R/W)

b7	b6	Mode	
0	0	Leap year effective	Writing to leap year counter disabled
0	1	Leap year effective	Writing to leap year counter enabled
1	0	Leap year invalid	Writing to leap year counter disabled
1	1	Leap year invalid	Writing to leap year counter enabled

- When the leap year control register is " $0 X$ " and the leap year counter is " 00 " \rightarrow Leap year (Feb. has 29 days).
- To disable leap year mode, write " 10 " to the leap year control register (Feb. 28 is followed by Mar. 1).

MODE REGISTER (R/W)

HEX	BIN	Mode
$0 H$	0000 B	Outputs TP2048 Hz
1 H	0001 B	Outputs TP1024 Hz
2 H	0010 B	Outputs TP256 Hz
3 H	0011 B	Outputs TP64 Hz
4 H	0100 B	Outputs INT1/2048s
5 H	0101 B	Outputs INT1/1024s
$6 H$	0110 B	Outputs INT1/256s
7 H	0111 B	Outputs INT1/64s
8 H	1000 B	Outputs INT1s
$9 H$	1001 B	Outputs INT10s
AH	1010 B	Outputs INT60s
BH	1011 B	Outputs BUSY signal
CH	1100 B	Test mode 1
DH	1101 B	Test mode 2
EH	1110 B	Test mode 3
FH	1111 B	Test mode 4

CONTROL REGISTER

Access mode	b3	b2	b1	b0
When writing	0	CLK adjust	Reset	CLK stop
		0: NOP	0: NOP	0: CLK start
		1: CLK adjust	1: Reset	1: CLK stop
	1	TP enable ${ }^{* 1}$	INT reset	INT stop
		0: TP = ENABLE	0: NOP	0: INT start
		1: TP = DISABLE	1: Reset	1: INT stop
When reading	(Don't care)	TP flag	OSC flag*2	BUSY flag ${ }^{*}$
		$0: T P=Z$	0: No oscillation	0: OFF
		1: $\mathrm{TP}=\mathrm{L}$	1: Oscillation	1: ON

*1 : When TP enable is 1 (TP = DISABLE), the TP pin becomes high impedance (actually a high level because a pull up resistor is connected to the TP pin). But TP flag is not DISABLE in this case.
*2 : If the OSC flag becomes 0 by oscillation stop, the OSC flag remains to be 0 when oscillation is resumed. To set OSC flag to 1 again, execute CLK reset (if the OSC flag still remains to be 0 , oscillation has not been started again).
Upon initial power application of the μ PD4992, 0 is set to the OSC flag.
*3 : The BUSY flag is " 1 " when the time counter of the μ PD4992 is operating (when read is disabled).

Table 1 Time Counter Data

TIME COUNTER	DATA	TIME COUNTER	DATA
1s second digit	$0-9$	1s day of month digit	$0-9$
10s seocnd digit	$0-5$	10s day of month digit	$0-3$
1s minute digit	$0-9$	1s month digit	$0-9$
10s minute digit	$0-5$	10s month digit	$0-1$
1s hour digit	$0-9$	1s year digit	$0-9$
10s hour digit	$0-5$	10s year digit	$0-9$
Day of week digit	$0-6$		

Table 2 Hour Counter Data

Hour	24 hour mode	12 hour mode	Hour	24 hour mode	12 hour mode
AM 1 o'clock	01H	81 H	PM 1 o'clock	13 H	C1H
AM 2 o'clock	02H	82H	PM 2 o'clock	14H	C 2 H
AM 3 o'clock	03H	83H	PM 3 o'clock	15 H	C3H
AM 4 o'clock	04H	84H	PM 4 o'clock	16 H	C 4 H
AM 5 o'clock	05H	85H	PM 5 o'clock	17H	C5H
AM 6 o'clock	06H	86H	PM 6 o'clock	18 H	C 6 H
AM 7 o'clock	07H	87H	PM 7 o'clock	19 H	C 7 H
AM 8 o'clock	08H	88 H	PM 8 o'clock	20 H	C 8 H
AM 9 o'clock	09H	89H	PM 9 o'clock	21 H	$\mathrm{C9H}$
AM 10 o'clock	10 H	90H	PM 10 o'clock	22 H	DOH
AM 11 o'clock	11 H	91H	PM 11 o'clock	23 H	D1H
PM 12 o'clock	12 H	D2H	AM 12 o'clock	00 H	92H

TYPICAL INT CONTROL EXAMPLES (mode register: INT output mode)
(1) Use of INT reset (example 1)

(2) Use of INT reset (example 2)

(3) Use of INT stop (example 1)

(4) Use of INT stop (example 2)

(5) Use of INT reset, INT stop

(6) Use of TP enable

TP OUTPUT (mode register: TP output mode)

BUSY SIGNAL

The time and calendar data read out when BUSY signal is being output may not be correct. This is because, the internal time counter is operating. Therefore, accessing must be disabled during this period or the data must be read out twice and checked by the software. (Reading data during BUSY period has not effect on the contents of the internal counter.)

OUTLINE DRAWING

20PIN PLASTIC DIP (300 mil)

NOTES

1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	25.40 MAX.	1.000 MAX.
B	1.27 MAX.	0.050 MAX.
C	2.54 (T.P.)	0.100 (T.P.)
D	0.50 ± 0.10	$0.020{ }_{-0.005}^{+0.004}$
F	1.1 MIN.	0.043 MIN .
G	3.5 ± 0.3	0.138 ± 0.012
H	0.51 MIN .	0.020 MIN .
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	7.62 (T.P.)	0.300 (T.P.)
L	6.4	0.252
M	0.25 ${ }_{-0.10}^{+0.10}$	$0.010{ }_{-0.003}^{+0.004}$
N	0.25	0.01
P	0.9 MIN .	0.035 MIN .
R	0~15 ${ }^{\circ}$	0~15 ${ }^{\circ}$
P20C-100-300A,C-1		

20 PIN PLASTIC SOP (300 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.
detail of lead end

ITEM	MILLIMETERS	INCHES
A	13.00 MAX.	0.512 MAX.
B	0.78 MAX.	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	$0.40{ }_{-0.05}^{+0.10}$	$0.016_{-0.003}^{+0.004}$
E	0.1 ± 0.1	0.004 ± 0.004
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
H	7.7 ± 0.3	0.303 ± 0.012
I	5.6	0.220
J	1.1	0.043
K	$0.20{ }_{-0.05}^{+0.10}$	$0.008_{-0.002}^{+0.004}$
L	0.6 ± 0.2	$0.024{ }_{-0.009}^{+0.008}$
M	0.12	0.005
N	0.10	0.004
P	$3{ }^{\circ}+3^{\circ}$	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$
		P20GM-50-300B, C-4

P20GM-50-300B, C-4

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.
Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

TYPES OF SURFACE MOUNT DEVICE

μ PD4992GS

Soldering process	Soldering condition	Symbol
Infrared ray reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$ or below, Reflow time: 30 seconds or below ($210^{\circ} \mathrm{C}$ or higher), Number of reflow process: 2, Exposure limit*: None	IR35-00-2
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$ or below, Reflow time: 40 seconds or below (200 ${ }^{\circ} \mathrm{C}$ or higher), Number of reflow process: 2, Exposure limit*: None	VP15-00-2
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or below, Number of flow process: 1, Exposure limit*: None	WS60-00-1
Partial heating method	Terminal temperature: $300^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or below, Exposure limit*: None	

*: Exposure limit before soldering after dry-pack package is opened.
Storage conditions: $25^{\circ} \mathrm{C}$ and relative humidity at 65% or less.
Note: Do not apply more than a single process at once, except for "Partial heating method".

TYPE OF THROUGH HOLE MOUNT DEVICE
$\mu \mathrm{PD} 4992 \mathrm{CX}$

Soldering process	Soldering conditions
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or below.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

