MOS INTEGRATED CIRCUIT μ**PD75064, 75066, 75068,** 75064(A), 75066(A), 75068(A)

4-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD75068 is a member of the 75X series of 4-bit single-chip microcomputers.

The minimum instruction execution time of the μ PD75068's CPU is 0.95 μ s. In addition to this high-speed capability, the chip contains an A/D converter and furnishes high-performance functions such as the serial bus interface (SBI) function compliant with the NEC standard format, providing powerful features and high cost performance. The μ PD75068(A) is a high-reliability version of the μ PD75068.

NEC also provides PROM versions suitable for small-scale production or evaluation samples in system development. The μ PD75P068 is the PROM version for the μ PD75064, 75066, 75068, and the μ PD75P068(A) is that for the μ PD75064(A), 75066(A), 75068(A).

The detailed function descriptions are described in the document below. Please make sure to read this document before starting design.

μ PD75068 User's Manual: IEU-1366

FEATURES

NEC

- Variable instruction execution time advantageous to high-speed operation and power-saving:
- 0.95 μ s, 1.91 μ s, or 15.3 μ s (at 4.19 MHz with the main system clock selected)
- 122 μ s (at 32.768 kHz with the subsystem clock selected)
- A/D converter (8-bit resolution, successive approximation): 8 channels
 - Capable of low-voltage operation: VDD = 2.7 to 6.0 V
- Timer function: 3 channels
- On-chip NEC standard serial bus interface (SBI)
- Very low-power watch operation enabled (5 μ A TYP. at 3 V)
- Pull-up resistor option allowed for 27 I/O lines
- The μPD75P068 and 75P068(A) (PROM versions) available: Capable of low-voltage operation (V_{DD} = 2.7 to 6.0 V)

APPLICATIONS

- μPD75064, 75066, 75068
- Home electronic appliances, air conditioners, cameras, and electronic measuring instruments
- μPD75064(A), 75066(A), 75068(A)
 Automotive electronics

The information in this document is subject to change without notice.

* * * * * *

The μ PD75064, 75066, 75068 and μ PD75064(A), 75066(A), 75068(A) differ only in their quality grade. Unless otherwise specified, this data sheet describes the μ PD75068 as the representative product. For products with the suffix (A) attached, please make the following substitutions when reading: μ PD75064 $\longrightarrow \mu$ PD75064(A)

μ**PD75066** —> μ**PD75066(A)**

μ**PD75068** —> μ**PD75068(A)**

ORDERING INFORMATION

Part number	Package	Quality Grade
μPD75064CU-xxx	42-pin plastic shrink DIP (600 mil)	Standard
μPD75064GB-xxx-3B4	44-pin plastic QFP (10x10 mm)	Standard
μ PD75066CU-xxx	42-pin plastic shrink DIP (600 mil)	Standard
μPD75066GB-xxx-3B4	44-pin plastic QFP (10x10 mm)	Standard
μ PD75068CU-xxx	42-pin plastic shrink DIP (600 mil)	Standard
μ PD75068GB-xxx-3B4	44-pin plastic QFP (10x10 mm)	Standard
μ PD75064CU(A)-xxx	42-pin plastic shrink DIP (600 mil)	Special
μPD75064GB(A)-xxx-3B4	44-pin plastic QFP (10x10 mm)	Special
μPD75066CU(A)-xxx	42-pin plastic shrink DIP (600 mil)	Special
μPD75066GB(A)-xxx-3B4	44-pin plastic QFP (10x10 mm)	Special
μ PD75068CU(A)-xxx	42-pin plastic shrink DIP (600 mil)	Special
μ PD75068GB(A)-xxx-3B4	44-pin plastic QFP (10x10 mm)	Special

Remark xxx : ROM code suffix

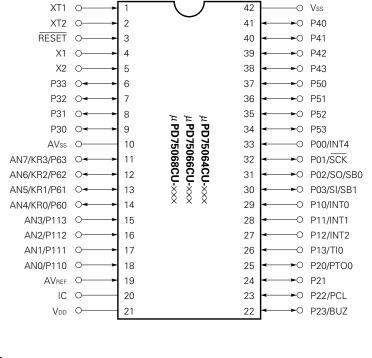
Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

★ DIFFERENCE BETWEEN μPD7506x SUBSERIES AND μPD7506x(A) SUBSERIES

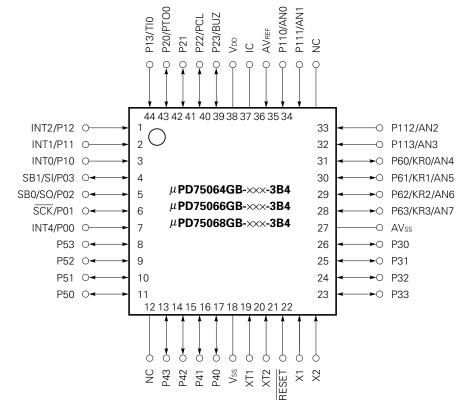
Part number	μPD75064	μPD75064(A)
	μPD75066	μPD75066(A)
Parameter	μPD75068	μPD75068(A)
Quality grade	Standard	Special

FUNCTION OVERVIEW

ltem	ltem		Function					
Instruction execution time		• Main system clock : 0.95 μs, 1.91 μs, 15.3 μs (at 4.19 MHz)						
		• S	• Subsystem clock : 122 μ s (at 32.768 kHz)					
Internal memory	ROM	• μ	PD75	064: 4096 × 8 bits				
		-		066 : 6016 × 8 bits				
		-	• µPD75068 : 8064 × 8 bits					
	RAM	512	2 × 4 I	bits				
General register				operating in 4 bits: 8				
		• W	/hen	operating in 8 bits: 4				
I/O port		32	12	CMOS input	Of these, seven with software-specifiable on-chip pull-up resistors			
			12	CMOS I/O	Software-specifiable on-chip pull-up resistors			
					Four pins can directly drive LEDs.			
			8	N-ch open-drain I/O	Breakdown voltage: 10 V			
					Mask-option-specifiable on-chip pull-up resistors			
					Can directly drive LEDs.			
Timer		3 с	hs	• Timer/event counter	-			
		00	Basic interval timer : Applicable to watchdog timer					
			Watch timer : Capable of buzzer output					
Serial interface		• 3-wire serial I/O mode						
			• 2-wire serial I/O mode					
		• SBI mode						
Bit sequencial but	ffer	16 bits						
Clock output func	tion	Φ , fx/2³, fx/2⁴, fx/2⁶ (Main system clock: at 4.19 MHz operation)						
A/D converter		• 8-bit resolution x 8 channels						
		• Low-power operation possible : VDD = 2.7 to 6.0 V						
Vectored interrup	t	External : 3 , Internal : 3						
Test input		External : 1, Internal : 1						
System clock osc	illator	Ceramic/crystal oscillator for main system clock						
		Crystal oscillator for subsystem clock						
Standby function		STOP / HALT mode						
Operating ambier temperature	nt	-40 to +85 °C						
Operating supply voltage		2.7 to 6.0 V						
Package		• 4:	2-pin	plastic shrink DIP (600 mil))			
		• 44-pin plastic QFP (10 x 10 mm)						



CONTENTS


1. PIN CONFIGURATION (TOP VIEW)	5
2. BLOCK DIAGRAM	7
3. PIN FUNCTIONS	8
3.1 Port Pins	8
3.2 Non-Port Pins	9
3.3 Pin Input/Output Circuits	10
3.4 Mask Option Selection	
3.5 Handling Unused Pins	
4. MEMORY CONFIGURATION	14
5. PERIPHERAL HARDWARE FUNCTIONS	18
5.1 Ports	18
5.2 Clock Generator	19
5.3 Clock Output Circuit ·····	20
5.4 Basic Interval Timer	21
5.5 Watch Timer ·····	22
5.6 Timer/Event Counter	23
5.7 Serial Interface	24
5.8 A/D Converter ·····	25
5.9 Bit Sequential Buffer	26
6. INTERRUPT FUNCTIONS	27
7. STANDBY FUNCTION	29
8. RESET OPERATION	30
9. INSTRUCTION SET	32
10. ELECTRICAL SPECIFICATIONS	40
11. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)	. 54
12. PACKAGE DRAWINGS	60
13. RECOMMENDED SOLDERING CONDITIONS	62
APPENDIX A. DEVELOPMENT TOOLS	64
APPENDIX B. RELATED DOCUMENTS	65

1. PIN CONFIGURATION (TOP VIEW)

• 42-pin plastic shrink DIP

• 44-pin plastic QFP


IC : Internally Connected (This pin should be directly connected to VDD)

PIN IDENTIFICATIONS

P00 - 03	:	Port 0
P10 - 13	:	Port 1
P20 - 23	:	Port 2
P30 - 33	:	Port 3
P40 - 43	:	Port 4
P50 - 53	:	Port 5
P60 - 63	:	Port 6
P110 - 113	3:	Port 11
KR0 - 3	:	Key Return
SCK	:	Serial Clock
SI	:	Serial Input
SO	:	Serial Output
SB0, 1	:	Serial Bus 0, 1
RESET	:	Reset Input
TI0	:	Timer Input 0
PTO0	:	Programmable Timer Output 0
BUZ	:	Buzzer Clock
PCL	:	Programmable Clock
INT0, 1, 4	:	External Vectored Interrupt 0, 1, 4
INT2	:	External Test Input 2
X1, 2	:	Main System Clock Oscillation 1, 2
XT1, 2	:	Subsystem Clock Oscillation 1, 2
AN0 - 7	:	Analog Input 0 - 7
AVREF	:	Analog Reference
AVss	:	Analog Vss
Vdd	:	Positive Power Supply
Vss	:	Ground

2. BLOCK DIAGRAM

Note The μ PD75064 uses the program counter of a 12-bit configuration, the μ PD75066 and μ PD75068 use that of a 13-bit configuration.

3. PIN FUNCTIONS

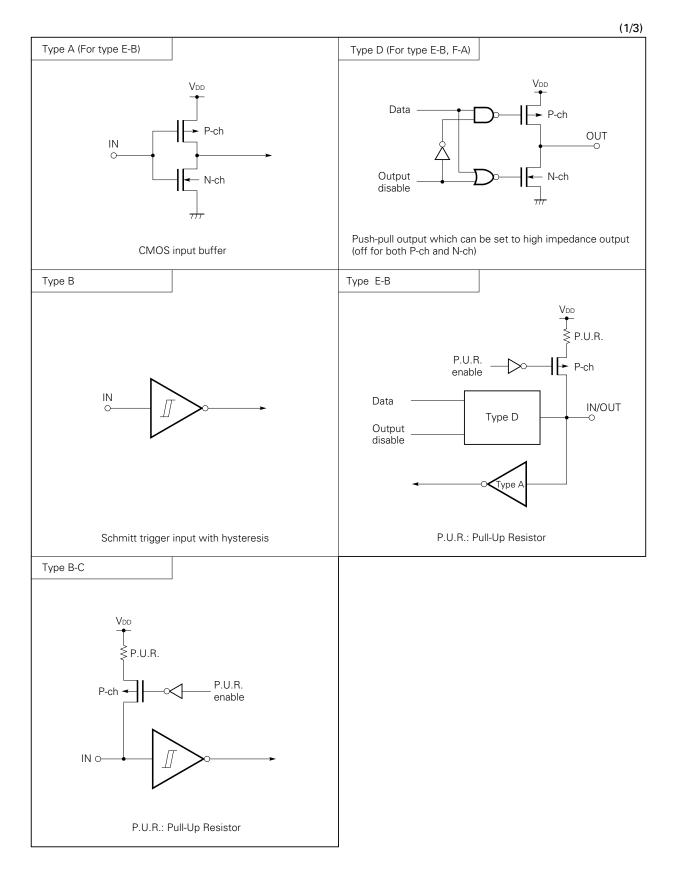
3.1 Port Pins

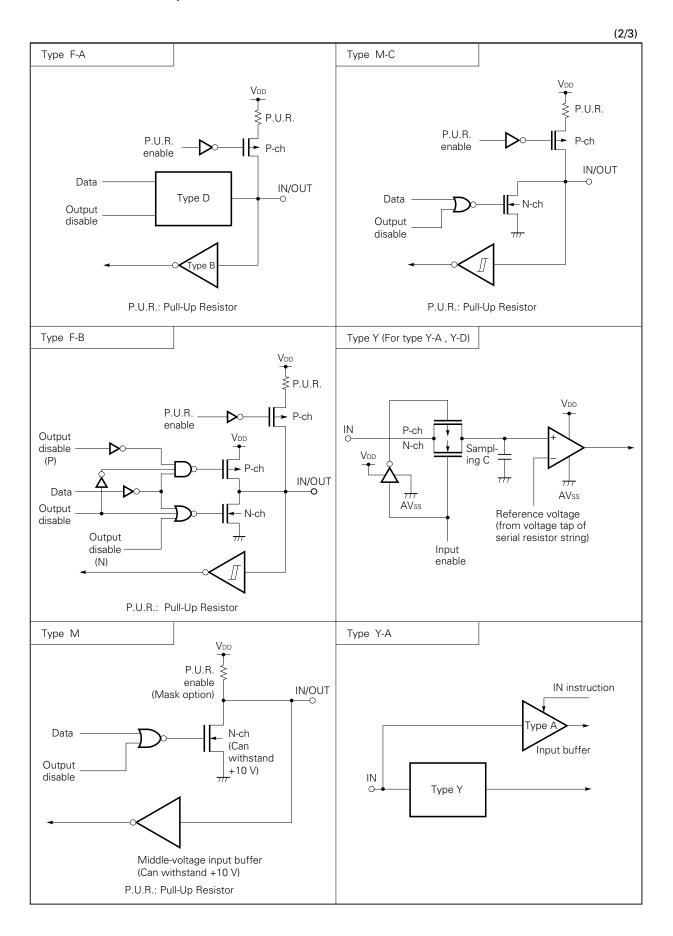
Pin name	Input/ output	Shared with	Function	8-bit I/O	When reset	I/O circuit type ^{Note 1}
P00	Input	INT4	4-bit input port (PORT0).		Input	B
P01	I/O	SCK	For P01 to P03, pull-up resistors can be			(Ē-А
P02	I/O	SO/SB0	provided by software in units of 3 bits.			(F)-В
P03	I/O	SI/SB1				M-C
P10	Input	INT0	With noise elimination function	×	Input	B-C
P11		INT1	4-bit input port (PORT1).			
P12	_	INT2	Pull-up resistors can be provided by soft-			
P13		TI0	ware in units of 4 bits.			
P20	I/O	PTO0	4-bit I/O port (PORT2).	×	Input	E-B
P21		_	Pull-up resistors can be provided by soft-			
P22	-	PCL	ware in units of 4 bits.			
P23		BUZ				
P30 ^{Note 2}	I/O	_	Programmable 4-bit I/O port (PORT3).	×	Input	E-B
P31 ^{Note 2}		_	I/O can be specified bit by bit. Pull-up			
P32 ^{Note 2}	-	_	resistors can be provided by software in units of 4 bits.			
P33Note 2	-	_				
P40 - P43 ^{Note 2}	I/O	_	N-ch open-drain 4-bit I/O port (PORT4). A pull-up resistor can be provided for each bit (mask option). Breakdown volt- age is 10 V in open-drain mode.	0	High level (when pull- up resistors are provided) or high impedance	Μ
P50 - P53 ^{Note 2}	I/O	_	N-ch open-drain 4-bit I/O port (PORT5). A pull-up resistor can be provided for each bit (mask option). Breakdown volt- age is 10 V in open-drain mode.		High level (when pull- up resistors are provided) or high impedance	Μ
P60	I/O	KR0/AN4	Programmable 4-bit I/O port (PORT6).	×	Input	(Y)-D
P61	1	KR1/AN5	I/O can be specified bit by bit. Pull-up			
P62	1	KR2/AN6	resistors can be provided by software in units of 4 bits.			
P63]	KR3/AN7				
P110	Input	AN0	4-bit input port (PORT11).	×	Input	Y-A
P111	1	AN1				
P112	1	AN2				
P113	1	AN3				

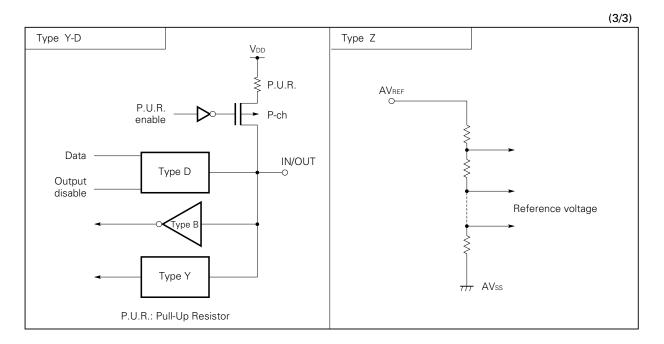
Notes 1. The circle (\bigcirc) indicates the Schmitt trigger input.

2. Can directly drive LEDs.

3.2 Non-Port Pins


Pin name	Input/ output	Shared with	Function			When reset	l/O circuit type ^{Note 1}
TIO	Input	P13	Input for receiving external event pulse signal for timer/event counter			-	B-C
PTO0	I/O	P20	Timer/event counter ou	tput		Input	E-B
PCL	I/O	P22	Clock output			Input	E-B
BUZ	I/O	P23	Output frequency select (for buzzer output or sy		ng)	Input	E-B
SCK	I/O	P01	Serial clock I/O			Input	(F)-A
SO/SB0	I/O	P02	Serial data output Serial bus I/O			Input	(Ē)-В
SI/SB1	I/O	P03	Serial data input Serial bus I/O			Input	M)-C
INT4	Input	P00	Edge-detective vectored (both rising and falling			-	B
INT0	Input	P10	Edge-detective vectored	l interrupt input	Note 2	_	B-C
INT1		P11	(detection edge selectal	ole)	Note 3		
INT2	Input	P12	Edge-detective testable input Note 3 (rising edge detection)		-	B-C	
KR0 - KR3	I/O	P60 - P63/ AN4 - AN7	Parallel falling edge detection testable input		Input	(Y)-D	
AN0 - AN3	Input	P110 - P113	For A/D converter only	8-bit analog input		Input	Y-A
AN4 - AN7	I/O	P60 - P63/ KR0 - KR3					(Y)-D
AVREF	Input	-		Reference voltag	e input	_	z
AVss	-	-		GND potential		_	z
X1, X2	Input	_	Crystal/ceramic connection for main system clock generation. When external clock signal is used, the signal should be applied to X1, and its reverse phase signal to X2.		-	_	
XT1, XT2	Input	_	Crystal connection for subsystem clock genera- tion. When external clock signal is used, the signal should be applied to XT1, and its reverse phase signal to XT2. XT1 can be used as a 1-bit input (test).			-	-
RESET	Input	-	System reset input			-	B
IC	-	-	Internally connected.			-	-
			(Connect this pin directly to VDD)				
Vdd	-	-	Positive power supply			-	-
Vss	-	-	GND potential			-	-


Notes 1. The circle (\bigcirc) indicates the Schmitt trigger input.


- 2. Clock synchronous
- 3. Asynchronous

3.3 Pin Input/Output Circuits

The input/output circuit of each μ PD75068 pin is shown below in a simplified manner.

3.4 Mask Option Selection

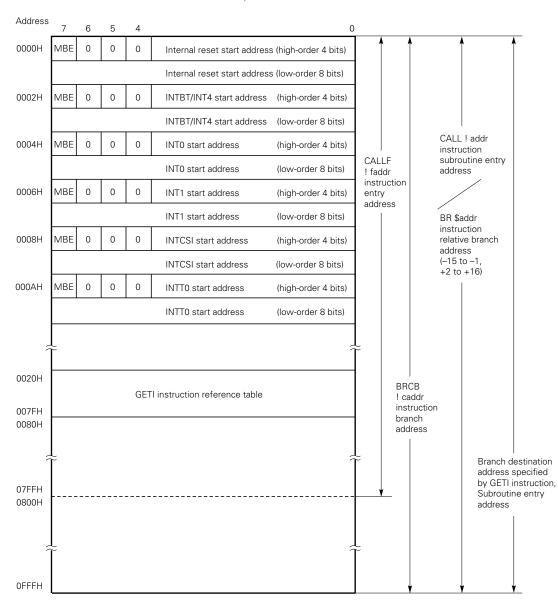
The following mask options are available for selection for each pin.

Pin name	Mask option					
P40 - P43, P50 - P53	 Pull-up resistor enabled (specifiable bit by bit) 	 Pull-up resistor disabled (specifiable bit by bit) 				
XT1, XT2	 Feedback resistor enabled (if a subsystem clock is used) 	 Feedback resistor disabled (if a subsystem clock is not used) 				

3.5 Handling Unused Pins

Pin	Recommended connection
P00/INT4	Connect to Vss.
P01/SCK	Connect to Vss or VDD.
P02/SO/SB0	
P03/SI/SB1	
P10/INT0-P12/INT2	Connect to Vss.
P13/TI0	
P20/PTO0	Input state: Connect to Vss or VDD.
P21	Output state: Open
P22/PCL	
P23/BUZ	
P30-P33	
P40-P43	
P50-53	
P60/KR0/AN4-P63/KR3/AN7	
P110/AN0-P113/AN3	Connect to Vss or VDD.
AVREF	Connect to Vss.
AVss	
XT1	Connect to Vss or VDD.
XT2	Open
IC	Directly connect to Vod.

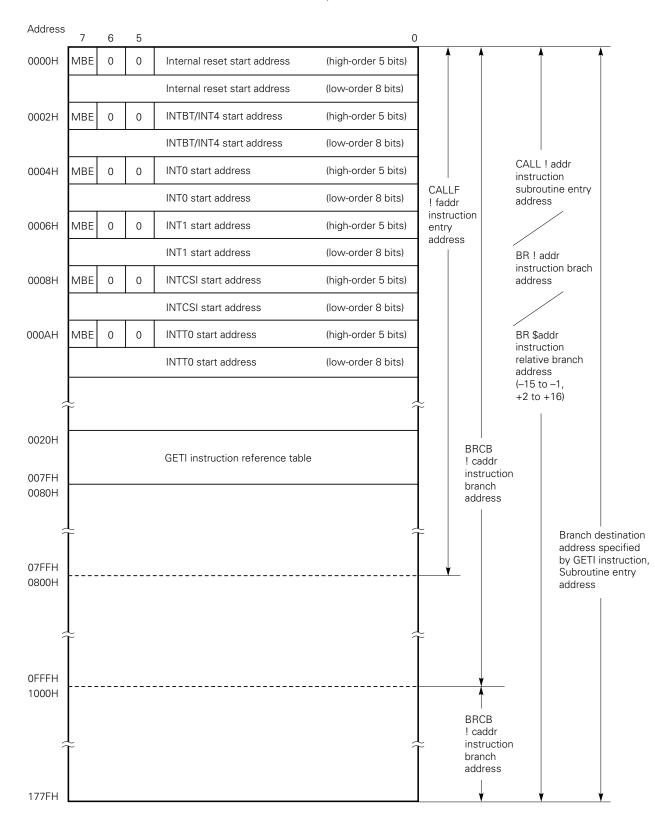
Table 3-1. Handling Unused Pins


4. MEMORY CONFIGURATION

- Program memory (ROM) 4096 \times 8 bits (0000H to 0FFFH) : $\mu\text{PD75064}$
 - 6016 \times 8 bits (0000H to 177FH) : $\,\mu\text{PD75066}$

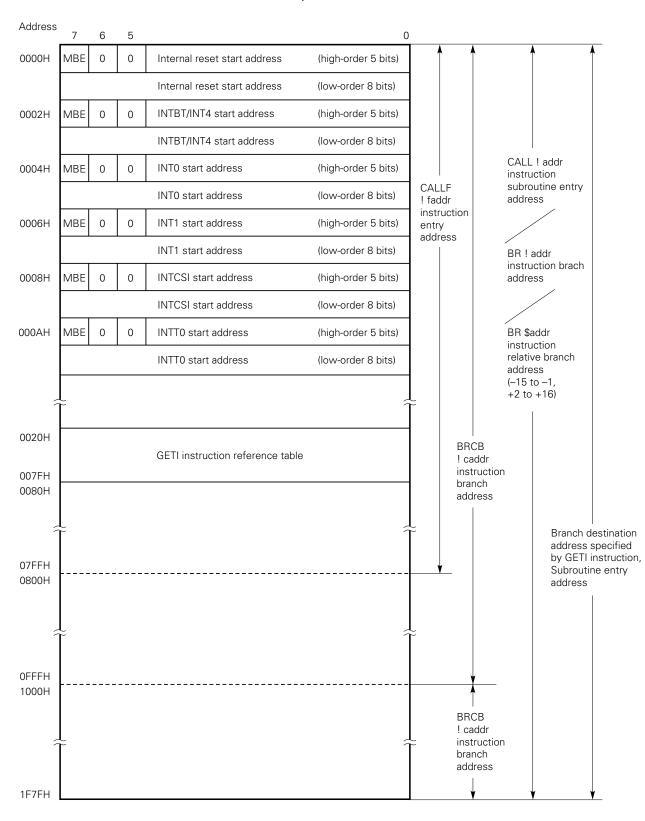
..... 8064 \times 8 bits (0000H to 1F7FH) : μ PD75068

- 0000H to 0001H : Vector table in which the program start address by reset is stored
- 0002H to 000BH : Vector table in which the program start address by interrupt is stored
- 0020H to 007FH : Table area to be referenced by GETI instruction
- Data memory
 - Data area \dots 512 \times 4 bits (000H to 1FFH)
 - Peripheral hardware area 128 \times 4 bits $\,$ (F80H to FFFH)


Figure 4-1. Program Memory Map

(a) µPD75064

NEC


μPD75064, 75066, 75068, 75064(A), 75066(A), 75068(A)

(b) *µ***PD75066**

NEC

μPD75064, 75066, 75068, 75064(A), 75066(A), 75068(A)

(c) *µ***PD75068**

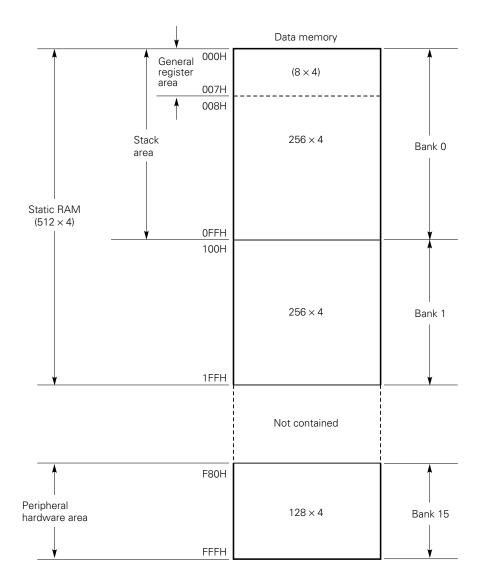


Figure 4-2. Data Memory Map

5. PERIPHERAL HARDWARE FUNCTIONS

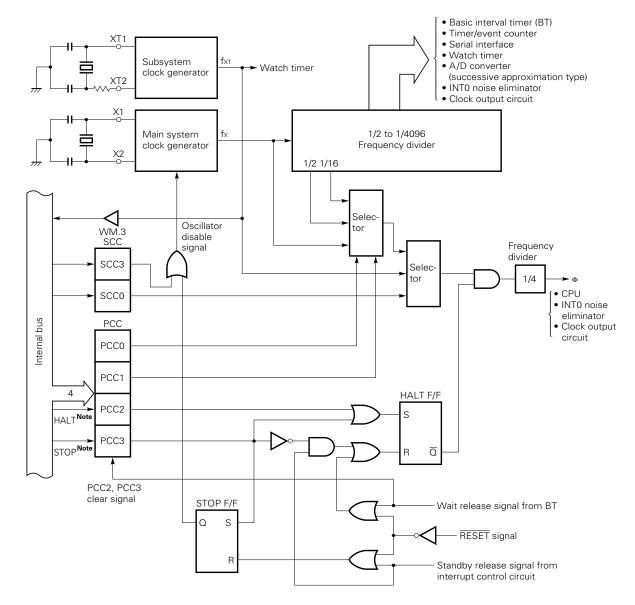
5.1 Ports

The following three types of I/O port are provided:

CMOS input ports (PORT0, 1, 11)	:	12
 CMOS input/output ports (PORT2, 3, 6) 	:	12
• N-ch open-drain input/output ports (PORT4, 5)	:	8
Total		32

Table 5-1. Functions of Port

Port (Symbol)	Function	Operation/features	Remarks
PORT0 PORT1	4-bit input	Can be read or tested regard- less of the operation mode of the dual function pin.	Shared with the SO/SB0, SI/SB1, SCK, INT0-2, 4, and TI0 pins.
PORT3 ^{Note} PORT6	4-bit I/O	Can be specified for input/ output in bit units.	Port 6 is shared with pins KR0 to KR3 and pins AN4 to AN7.
PORT2	-	Can be specified for input/ output in 4-bit units.	Port 2 is shared with PTO0, PCL, and BUZ pins.
PORT4 ^{Note} PORT5 ^{Note}	4-bit I/O (N-ch open-drain, can withstand 10 V)	Can be specified for input/ output in 4-bit units. Ports 4 and 5 can be paired to input/output data in 8-bit units.	Whether or not the internal pull-up resistor is provided can be specified for each bit by mask option.
PORT11	4-bit input	4-bit port dedicated to input	Port 11 is shared with pins AN0 to AN3.


Note Can directly drive LEDs.

5.2 Clock Generator

NEC

The clock generator operates according to the statuses of the processor clock control register (PCC) and the system clock control register (SCC). Two types of clock are provided: main system clock and subsystem clock, and the instruction execution time can be changed.

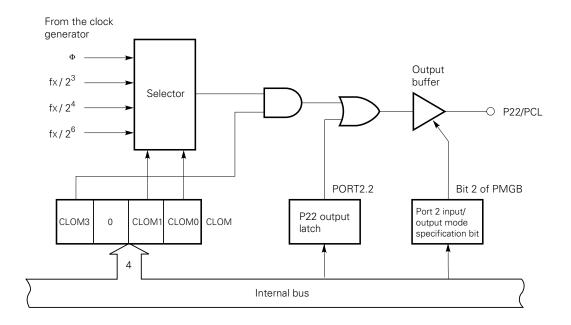
- 0.95 μ s / 1.91 μ s / 15.3 μ s (operated with main system clock at 4.19 MHz)
- 122 μ s (operated with subsystem clock at 32.768 kHz)

Figure 5-1. Clock Generator Block Diagram

Note Instruction execution

Remarks 1. fx = Main system clock frequency

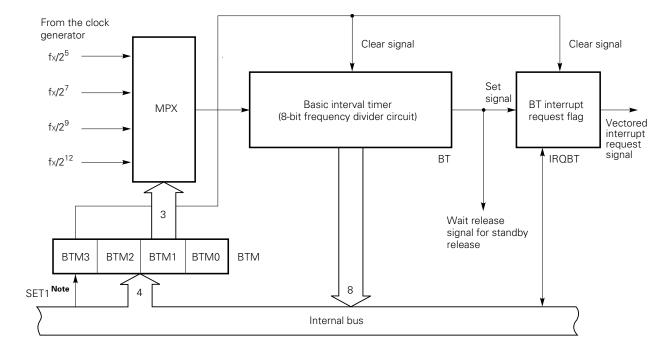
- 2. fxT = Subsystem clock frequency
- **3.** $\Phi = CPU clock$
- 4. PCC: Processor clock control register
- 5. SCC: System clock control register
- 6. One clock cycle (tcy) at Φ is equal to one machine cycle of an instruction.


For tcy, refer to AC Characteristics in 10. ELECTRICAL SPECIFICATIONS.

5.3 Clock Output Circuit

The clock output circuit outputs clock pulses from the P22/PCL pin, and is used to supply clock pulses to remote unit controller and peripheral LSIs.

• Clock output (PCL): 0, 524 kHz, 262 kHz, 65.5 kHz (fx = at 4.19 MHz)

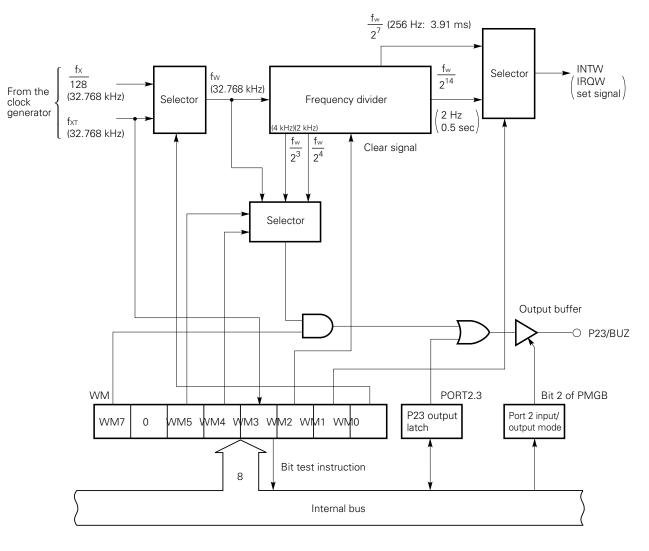

Remark Measures are taken to prevent outputting a narrow pulse when selecting clock output enable/disable.

5.4 Basic Interval Timer

NEC

The basic interval timer has these functions:

- Interval timer operation which generates a reference timer interrupt
- · Watchdog timer application which detects a program runaway
- · Selection of wait time for releasing the standby mode and counting the wait time
- Reading out the count value


Figure 5-3. Basic Interval Timer Configuration

Note Instruction execution

5.5 Watch Timer

The μ PD75068 has an on-chip 1-ch watch timer. The watch timer has the following functions:

- Sets the test flag (IRQW) with a 0.5-sec interval. The standby mode can be released by IRQW.
- The 0.5-second interval can be generated from either the main system clock or subsystem clock.
- The time interval can be made 128 times faster (3.91 ms) by selecting the fast mode. This is convenient for program debugging, testing, etc.
- Any of the frequencies 2.048 kHz, 4.096 kHz, and 32.768 kHz can be output to the P23/BUZ pin. This can be used for beep and system clock frequency trimming.
- The frequency divider circuit can be cleared so that a zero-second start of the watch can be made.

Figure 5-4. Watch Timer Block Diagram

Remark () is for fx = 4.194304 MHz, fxT = 32.768 kHz.

5.6 Timer/Event Counter

The μ PD75068 has an on-chip 1-ch timer/event counter. The timer/event counter has the following functions:

- Programmable interval timer operation
- · Outputs square-wave signal of a user-selectable frequency to the PTO0 pin
- Event counter operation
- Divides the TI0 pin input by N and outputs to the PTO0 pin (frequency divider operation)
- · Supplies serial shift clock to the serial interface circuit
- Count condition read-out function.

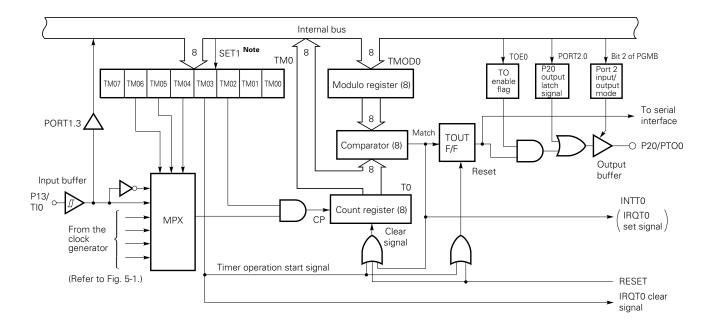


Figure 5-5. Block Diagram of Timer / Event Counter

Note Instruction execution

5.7 Serial Interface

(1) Serial interface function

The μ PD75068 contains a clock synchronous 8-bit serial interface, which has four modes.

- · Operation halt mode
- 3-wire serial I/O mode
- 2-wire serial I/O mode
- · SBI (serial bus interface mode)

Internal bus Bit 8 Bit manipulation Bit 8/4 test test 8 8 Slave address SBIC CSIM (8) register (SVA) Match RELT signal Address comparator CMDT (8)P03/SI/SB1 ۷ SO \cap Selector SET CLR latch Shift register (SIO) D 0 (8) ACKE BSYE ACKT P02/SO/SB0 0-Selector Busy/ acknowledge output circuit Bus release/ RELD CMDD command/ ACKD acknowledge detection circuit . INTCSI P01/SCK IRQCSI Serial clock INTCSI O counter control circuit set signal, ¥ P01 - f_x/2³ output $-f_{x}/2^{4}$. latch Serial clock Serial clock - f_x/2⁶ control circuit selector TOUT F/F (from timer/ event counter) 2 External SCK

Figure 5-6. Block Diagram of Serial Interface

5.8 A/D Converter

The μ PD75068 contains an 8-bit analog/digital (A/D) converter that has eight analog input channels (AN0 - AN7).

The A/D converter employs the successive-approximation method.

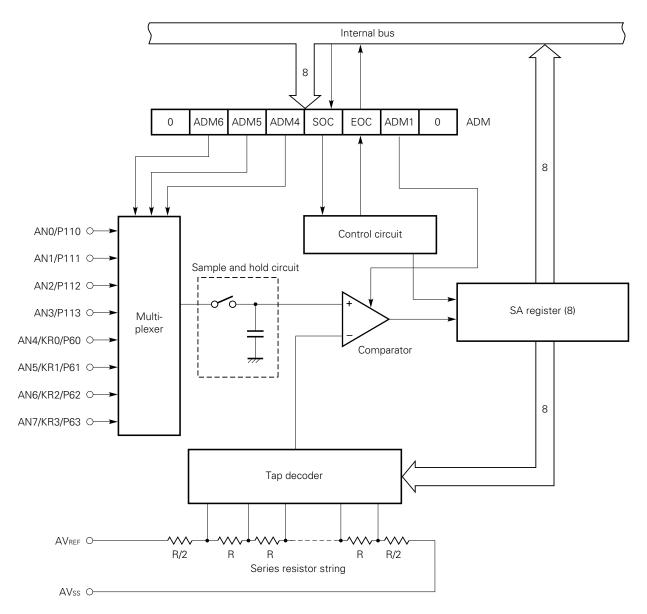
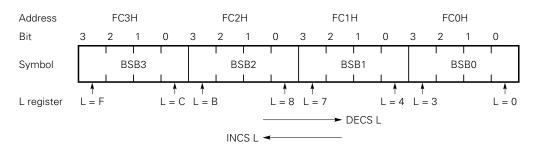



Figure 5-7. Block Diagram of A/D Converter

5.9 Bit Sequential Buffer: 16 Bits

The bit sequential buffer is a data memory specifically provided for bit manipulation. With this buffer, addresses and bit specifications can be sequentially updated by bit manipulation operation. Therefore, this buffer is very useful for processing long data in bit units.

Figure 5-8. Bit Sequential Buffer Format

Remark For "pmem.@L" addressing, the specification bit is shifted according to the L register.

6. INTERRUPT FUNCTIONS

The μ PD75068 has six different interrupt sources. In addition, multiple interrupts with priority control are possible. Two types of test sources are provided. Of these test sources, INT2 has two types of edge detection testable inputs.

	Interruption Source	IN/OUT	Interruption Order ^{Note1}	Vectored Interrupt Request Signal (Vector table address)	
INTBT	(Reference time interval signal from basic interval timer)	IN	1	VRQ1 (0002H)	
INT4	(Detection of both rising edge and falling edge is valid.)	OUT			
INT0	(Selection of rising edge detection or	OUT	2	VRQ2 (0004H)	
INT1	falling edge detection)	OUT	3	VRQ3 (0006H)	
INTCSI	(Serial data transmission completion signal)	IN	4	VRQ4 (0008H)	
INTT0	(Coincidence signal of programmable timer/counter count register and modulo register)	IN	5	VRQ5 (000AH)	
INT2 ^{Note2}	(Detection of rising edge of input to INT2 pin or detection of falling edge of any input to KR0 to KR3)	OUT	Test inp	out signal (Set IRQ and IRQW)	
INTWNote2 (Signal from watch timer)		IN			

Table 6-1.	Interruption	Source	Types
------------	--------------	--------	-------

Notes 1. The interruption order shows the priority order of the pins when several interruption requests occur at the same time.

2. Test source. Like the interruption source, it is influenced by the interruption enable flag. However, vectored interrupt will not occur.

The interrupt control circuit of the μ PD75068 has the following functions:

- Hardware controlled vectored interrupt function which can control whether or not to acknowledge an interrupt based on the interrupt flag (IE×××) and interrupt master enable flag (IME)
- The interrupt start address can be set arbitrarily.
- Interrupt request flag (IRQxxx) test function (an interrupt generation can be confirmed by software)
- Standby mode release (interrupts to be released can be selected by the interrupt enable flag)

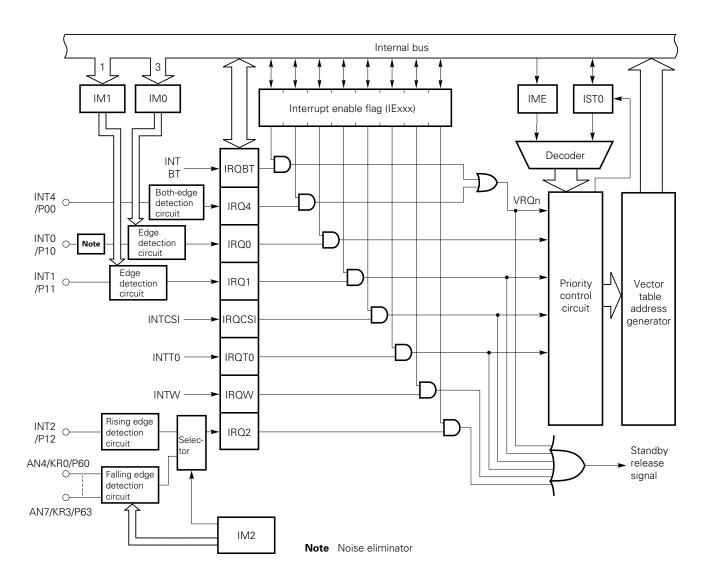


Figure 6-1. Block Diagram of Interrupt Control Circuit

7. STANDBY FUNCTION

The μ PD75068 has two different standby modes (STOP mode and HALT mode) to reduce power dissipation while waiting for program execution.

		STOP mode	HALT mode		
Instruction for setting		STOP instruction	HALT instruction		
System	clock for setting	Can be set only when operating on the main system clock.	Can be set either with the main system clock or the subsystem clock.		
Opera- tion	Clock oscillator	Only the main system clock stops its operation.	Only the CPU clock \bullet stops its operation (oscillation continues).		
status	Basic interval timer	Does not operate.	Can operate only at main system clock oscillation (IRQBT is set at reference time intervals.).		
	Serial interface	Can operate only when the external SCK input is selected for the serial clock.	Can operate only when external SCK input is selected as the serial clock or at main system clock oscillation.		
	Timer/event counter	Can operate only when the TI0 pin input is selected for the count clock.	Can operate only when TI0 pin input is specified as the count clock or at main system clock oscillation.		
	Watch timer	Can operate when fxT is selected as the count clock.	Can operate.		
	A/D converter	Does not operate.	Can operate. ^{Note}		
	External interrupt	INT1, INT2, and INT4 can operate. Only INT0 cannot operate.			
	CPU	Does not operate.			
Release signal		An interrupt request signal from hard- ware whose operation is enabled by the interrupt enable flag or the RESET signal input	An interrupt request signal from hard- ware whose operation is enabled by the interrupt enable flag or the RESET signal input		

Table 7-1. Standby Mode Statuses

Note A/D converter's operation in HALT mode is possible only when the main system clock operates.

8. RESET OPERATION

When the $\overline{\text{RESET}}$ signal is input, the μ PD75068 is reset and all hardware is initialized as indicated in Table 8-1. Figure 8-1 shows the reset operation timing.

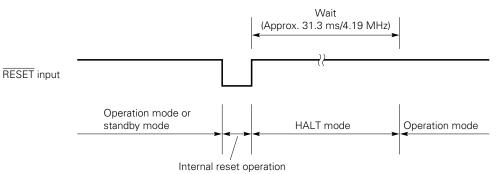


Figure 8-1. Reset Operation by RESET Input

Hardware			e	RESET input in standby mode	RESET input during operation
Program counter (PC) μPD75064 μPD75066 μPD75068		μPD75064	Contents of lower 4 bits of address 0000H in program memory are set to PC11 - 8, and that of 0001H are set to PC7 - 0.	Same operation as that in standby state	
		•	Contents of lower 5 bits of address 0000HSame operation asin program memory are set to PC12 - 8,standby statand that of 0001H are set to PC7 - 0.PC7 - 0.		
PSW	Carry	flag (CY))	Retained	Undefined
	Skip f	lag (SK0-	-2)	0	0
	Interr	upt statu	s flag (IST0)	0	0
	Bank	ank enable flag (MBE)		The contents of bit 7 of address 0000H of the program memory is set to MBE.	Same operation as that in standby state
Stack po	inter (SI	P)		Undefined	Undefined
Data me	mory (R	AM)		Retained ^{Note}	Undefined
General (X, A, H,	•	•		Retained	Undefined
Bank sel	ection re	egister (N	/IBS)	0	0
Basic int	terval	rval Counter (BT)		Undefined	Undefined
timer		Mode register (BTM)		0	0
Timer/ev	/ent	Counter (T0)		0	0
counter		Modulo	register (TMOD0)	FFH	FFH
		Mode reg	gister (TM0)	0	0
		TOE0, TOUT F/F 0, 0		0, 0	
Watch timer Mode register (WM)		Mode reg	gister (WM)	0	0

Note Data of address 0F8H to 0FDH of the data memory becomes undefined when the $\overline{\text{RESET}}$ signal is input.

Hardware			RESET input in standby mode	RESET input during operation	
Serial	Shift register (SIO)		Retained	Undefined	
interface	Operation mode register (CSIM)		0	0	
	SBI control re	egister (SBIC)	0	0	
	Slave addres	s register (SVA)	Retained	Undefined	
Clock genera- tor, Clock	Processor clo (PCC)	ck control register	0	0	
output circuit	System clock (SCC)	control register	0	0	
	Clock output mode register (CLOM)		0	0	
Interrupt function	Interrupt request flag	IRQ1, IRQ2, and IRQ4	Undefined	Undefined	
	(IRQxxx)	Other than above	0	0	
	Interrupt ena	ble flag (IE×××)	0	0	
	Interrupt mas (IME)	ter enable flag	0	0	
	INT0, 1, 2, m (IM0, IM1, IM		0, 0, 0	0, 0, 0	
Digital port	Output buffer		Off	Off	
	Output latch		Clear (0)	Clear (0)	
	Input/output (PMGA, PMG	mode register B)	0	0	
	Pull-up resistor specification register (POGA)		0	0	
A/D converter	Mode registe	r (ADM)	04H	04H	
	SA register (S	SA)	Undefined	Undefined	
Bit sequential b	uffer (BSB0-BS	B3)	Retained	Undefined	

Table 8-1. Status of All Hardware after Reset (2/2)

9. INSTRUCTION SET

(1) Operand identifier and its descriptive method

The operands are described in the operand column of each instruction according to the descriptive method for the operand format of the appropriate instructions. Details should be followed by "**RA75X Assembler Package User's Manual, Language.**" For descriptions in which alternatives exist, one element should be selected. Capital letters and plus and minus signs are keywords; therefore, they should be described as they are.

For immediate data, the appropriate numerical values or labels should be described.

Identifier		Description			
reg reg1	X, A, B, C, D, E, H, L X, B, C, D, E, H, L				
rp rp1 rp2	XA, BC, DE, BC, DE, HL BC, DE				
rpa rpa1	HL, DE, DL DE, DL				
n4 n8	4-bit immediate data or label 8-bit immediate data or label				
mem ^{Note} bit	8-bit immediate data or label 2-bit immediate data or label				
fmem pmem		l, FF0H - FFFH immediate data or label immediate data or label			
addr	μPD75064	0000H - 0FFFH immediate data or label			
	μPD75066	0000H - 177FH immediate data or label			
	μPD75068	0000H - 1F7FH immediate data or label			
caddr	12-bit immediate data or label				
faddr	11-bit immediate data or label				
taddr	20H - 7FH immediate data (however, bit 0 = 0) or label				
PORTn	PORT0 - PORT6, PORT11				
IExxx MBn	IEBT, IECSI, MB0, MB1, N	IET0, IE0, IE1, IE2, IE4, IEW MB15			

Note Only even address can be specified for mem when processing 8-bit data.

(2) Symbol definitions in operation description

- A : A register; 4-bit accumulator
- B : B register
- C : C register
- D : D register
- E : E register
- H : H register
- L : L register
- X : X register
- XA : Pair register (XA); 8-bit accumulator
- BC : Pair register (BC)
- DE : Pair register (DE)

HL	:	Pair register (HL)
PC	:	Program counter
SP	:	Stack pointer
CY	:	Carry flag; Bit accumulator
PSW	:	Program status word
MBE	:	Memory bank enable flag
PORTn	:	Port n (n = 0 to 6, 11)
IME	:	Interrupt master enable flag
IE×××	:	Interrupt enable flag
MBS	:	Memory bank selection register
PCC	:	Processor clock control register
	:	Address bit delimiter
(××)	:	Contents addressed by $\!\times\!\!\times$
××Н	:	Hexadecimal data

NEC

(3) Symbols used for the addressing area column

*1	MB = MBE · MBS (MBS = 0, 1, 15)	
*2	MB = 0	
*3	MBE = 0: MB = 0 (00H - 7FH) MB = 15 (80H - FFH) MBE = 1: MB = MBS (MBS = 0, 1, 15)	Data memory addressing
*4	MB = 15, fmem = FB0H - FBFH, FF0H - FFFH	
*5	MB = 15, pmem = FC0H - FFFH	
*6	μPD75064 addr = 0000H - 0FFFH	
	μPD75066 addr = 0000H - 177FH	
	μPD75068 addr = 0000H - 1F7FH	
*7	addr = (Current PC) – 15 to (Current PC) – 1 (Current PC) + 2 to (Current PC) + 16	
*8	μPD75064 caddr = 0000H - 0FFFH	Program memory addressing
	μ PD75066 caddr = 0000H - 0FFFH (PC 12 = 0) or = 1000H - 177FH (PC12 = 1)	
	μ PD75068 caddr = 0000H - 0FFFH (PC 12 = 0) or = 1000H - 1F7FH (PC12 = 1)	
*9	faddr = 0000H - 07FFH	
*10	taddr = 0020H - 007FH	

Remarks 1. MB indicates the memory bank that can be accessed.

- 2. For *2, MB = 0 regardless of MBE and MBS settings.
- **3.** For *4 and *5, MB = 15 regardless of MBE and MBS.
- 4. For *6 to *10, each addressable area is indicated.

(4) Description of machine cycle column

S indicates the number of machine cycles necessary for skipping any skip instruction. The value of S changes as follows:

• When no skip is performed
• When a 1-byte or 2-byte instruction is skipped
• When a 3-byte instruction (BR !addr ^{Note} , CALL !addr instruction) is skippedS = 2

Note BR !addr instruction is not provided in the μ PD75064.

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equivalent to one CPU clock Φ cycle. Therefore, the length of the machine cycle can be selected from three different lengths by the PCC setting.

★ (5) Representative products listed in operation column

The products listed in the operation column (μ PD75064, 75066, 75068) stand for the products listed below.

μPD75064	μPD75064, μPD75064(A)
μPD75066	μPD75066, μPD75066(A)
μPD75068	μPD75068, μPD75068(A)

NEC

Group	Mne- monic	Operand	Bytes	Ma- chine cycle	Operation	Address- ing area	Skip condition
Transfer	MOV	A, #n4	1	1	A ← n4		String A
		reg1, #n4	2	2	reg1 ← n4		
		XA, #n8	2	2	XA ← n8		String A
		HL, #n8	2	2	HL ← n8		String B
		rp2, #n8	2	2	rp2 ← n8		
		A, @HL	1	1	$A \leftarrow (HL)$	*1	
		A, @rpa1	1	1	$A \leftarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftarrow (HL)$	*1	
		@HL, A	1	1	$(HL) \leftarrow A$	*1	
		@HL, XA	2	2	$(HL) \leftarrow XA$	*1	
		A, mem	2	2	A ← (mem)	*3	
		XA, mem	2	2	XA ← (mem)	*3	
		mem, A	2	2	(mem) ← A	*3	
		mem, XA	2	2	(mem) ← XA	*3	
		A, reg	2	2	A ← reg		
		XA, rp	2	2	$XA \leftarrow rp$		
		reg1, A	2	2	reg1 ← A		
		rp1, XA	2	2	rp1 ← XA		
	хсн	A, @HL	1	1	$A \leftrightarrow (HL)$	*1	
		A, @rpa1	1	1	$A \leftrightarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftrightarrow (HL)$	*1	
		A, mem	2	2	$A \leftrightarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftrightarrow (mem)$	*3	
		A, reg1	1	1	$A \leftrightarrow reg1$		
		XA, rp	2	2	$XA \leftrightarrow rp$		
Table	моут	XA, @PCDE	1	3	・μ PD75064		
reference					XA ← (PC11-8 + DE)ком		
					・μ PD75066, 75068		
					XA ← (PC12-8 + DE)ком		
		XA, @PCXA	1	3	・μ PD75064		
					XA ← (РС11-8 + ХА)ком		
					・μPD75066, 75068		
					XA ← (PC12-8 + XA)ком		
Arithme-	ADDS	A, #n4	1	1 + S	$A \leftarrow A + n4$		carry
tic		A, @HL	1	1 + S	$A \leftarrow A + (HL)$	*1	carry
	ADDC	A, @HL	1	1	$A, CY \gets A + (HL) + CY$	*1	
	SUBS	A, @HL	1	1 + S	$A \leftarrow A - (HL)$	*1	borrow
	SUBC	A, @HL	1	1	A, CY \leftarrow A – (HL) – CY	*1	

NEC

Group	Mne- monic	Operand	Bytes	Ma- chine cycle	Operation	Address- ing area	Skip condition
Arithmetic	AND	A, #n4	2	2	$A \leftarrow A \land n4$		
		A, @HL	1	1	$A \leftarrow A \land (HL)$	*1	
	OR	A, #n4	2	2	$A \leftarrow A \lor n4$		
		A, @HL	1	1	$A \leftarrow A \lor (HL)$	*1	
	XOR	A, #n4	2	2	$A \leftarrow A \forall n4$		
		A, @HL	1	1	$A \leftarrow A \forall$ (HL)	*1	
Accumulator	RORC	А	1	1	$CY \leftarrow A_0 \;, \;\; A_3 \leftarrow CY, \;\; A_{n-1} \leftarrow A_n$		
manipulation	NOT	А	2	2	$A \leftarrow \overline{A}$		
Increment/	INCS	reg	1	1 + S	reg ← reg + 1		reg = 0
decrement		@HL	2	2 + S	(HL) ← (HL) + 1	*1	(HL) = 0
		mem	2	2 + S	(mem) ← (mem) + 1	*3	(mem) = 0
	DECS	reg	1	1 + S	reg ← reg – 1		reg = FH
Compari-	SKE	reg, #n4	2	2 + S	Skip if reg = n4		reg = n4
son		@HL, #n4	2	2 + S	Skip if (HL) = n4	*1	(HL) = n4
		A, @HL	1	1 + S	Skip if A = (HL)	*1	A = (HL)
		A, reg	2	2 + S	Skip if A = reg		A = reg
Carry	SET1	СҮ	1	1	CY ← 1		
flag	CLR1	СҮ	1	1	$CY \leftarrow 0$		
manipu- lation	SKT	СҮ	1	1 + S	Skip if CY = 1		CY = 1
	NOT1	СҮ	1	1	$CY \leftarrow \overline{CY}$		
Memory	SET1	mem.bit	2	2	(mem.bit) \leftarrow 1	*3	
bit		fmem.bit	2	2	(fmem.bit) ← 1	*4	
manipu- lation		pmem.@L	2	2	(pmem7-2 + L3-2.bit(L1-0)) ← 1	*5	
		@H+mem.bit	2	2	(H + mem₃₋₀.bit) ← 1	*1	
	CLR1	mem.bit	2	2	(mem.bit) \leftarrow 0	*3	
		fmem.bit	2	2	(fmem.bit) \leftarrow 0	*4	
		pmem.@L	2	2	(pmem7-2 + L3-2.bit(L1-0)) ← 0	*5	
		@H+mem.bit	2	2	(H + mem₃₋₀.bit) ← 0	*1	
	SKT	mem.bit	2	2 + S	Skip if (mem.bit) = 1	*3	(mem.bit) = 1
		fmem.bit	2	2 + S	Skip if (fmem.bit) = 1	*4	(fmem.bit) = 1
		pmem.@L	2	2 + S	Skip if (pmem7-2 + L3-2.bit(L1-0)) = 1	*5	(pmem.@L) = 1
		@H+mem.bit	2	2 + S	Skip if (H + mem ₃₋₀ .bit) = 1	*1	(@H + mem.bit) = 1
	SKF	mem.bit	2	2 + S	Skip if (mem.bit) = 0	*3	(mem.bit) = 0
		fmem.bit	2	2 + S	Skip if (fmem.bit) = 0	*4	(fmem.bit) = 0
		pmem.@L	2	2 + S	Skip if (pmem7-2 + L3-2.bit(L1-0)) = 0	*5	(pmem.@L) = 0
		@H+mem.bit	2	2 + S	Skip if (H + mem ₃₋₀ .bit) = 0	*1	(@H + mem.bit) = 0
	SKTCLR	fmem.bit	2	2 + S	Skip if (fmem.bit) = 1 and clear	*4	(fmem.bit) = 1
		pmem.@L	2	2 + S	Skip if (pmem7-2 + L3-2.bit(L1-0)) = 1 and clear	*5	(pmem.@L) = 1
		@H+mem.bit	2	2 + S	Skip if (H + mem₃₀.bit) = 1 and clear	*1	(@H + mem.bit) = 1

Group	Mne- monic	Operand	Bytes	Ma- chine cycle	Operation	Address- ing area	Skip condition
Memory	AND1	CY, fmem.bit	2	2	$CY \gets CY \land (fmem.bit)$	*4	
bit mani- pulation		CY, pmem.@L	2	2	$CY \leftarrow CY \land (pmem_{7\text{-}2} + L_{3\text{-}2}.bit(L_{1\text{-}0}))$	*5	
pulation		CY, @H+mem.bit	2	2	$CY \leftarrow CY \land (H + mem_{3-0}.bit)$	*1	
	OR1	CY, fmem.bit	2	2	$CY \leftarrow CY \lor (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \gets CY \lor (pmem_{7\text{-}2} + L_{3\text{-}2}.bit(L_{1\text{-}0}))$	*5	
		CY, @H+mem.bit	2	2	$CY \leftarrow CY \lor (H + mem_{3-0}.bit)$	*1	
	XOR1	CY, fmem.bit	2	2	$CY \leftarrow CY \forall$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY ← CY ∀ (pmem7-2 + L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY ← CY ∀ (H + mem₃-₀.bit)	*1	
Branch	BR	addr	_	_	 μPD75064 PC₁₁₋₀ ← addr (Appropriate instructions are selected from BRCB !caddr, and BR \$addr by the assembler.) 	*6	
					 μPD75066, 75068 PC12-0 ← addr (Appropriate instructions are selected from BR !addr, BRCB !caddr, and BR \$addr by the assembler.) 		
		!addr ^{Note}	3	3	• μ PD75066, 75068 PC1₂-0 ← addr	*6	
		\$addr	1	2	• μ PD75064 PC11-0 ← addr • μ PD75066, 75068 PC12-0 ← addr	*7	
	BRCB	!caddr	2	2	• μ PD75064 PC11-0 ← caddr11-0 • μ PD75066, 75068 PC12-0 ← PC12 + caddr11-0	*8	
Sub- routine stack control	CALL	!addr	3	3	• μ PD75064 (SP - 4)(SP - 1)(SP - 2) \leftarrow PC ₁₁₋₀ (SP - 3) \leftarrow MBE, 0, 0, 0 PC ₁₁₋₀ \leftarrow addr, SP \leftarrow SP - 4 • μ PD75066, 75068 (SP - 4)(SP - 1)(SP - 2) \leftarrow PC ₁₁₋₀ (SP-3) \leftarrow MBE, 0, 0, PC ₁₂ PC ₁₂₋₀ \leftarrow addr, SP \leftarrow SP - 4	*6	

Note BR !addr instruction is not provided in the μ PD75064.

NEC

Group	Mne- monic	Operand	Bytes	Ma- chine cycle	Operation	Address- ing area	Skip condition
Sub- routine stack control	CALLF	!faddr	2	2	• μ PD75064 (SP – 4)(SP – 1)(SP – 2) ← PC ₁₁₋₀ (SP–3) ← MBE, 0, 0, 0 PC ₁₁₋₀ ← 00, faddr, SP ← SP – 4	*9	
					• μ PD75066, 75068 (SP - 4)(SP - 1)(SP - 2) \leftarrow PC ₁₁₋₀ (SP-3) \leftarrow MBE, 0, 0, PC ₁₂ PC ₁₂₋₀ \leftarrow 00, faddr, SP \leftarrow SP - 4		
	RET		1	3	• μ PD75064 MBE, 0, 0, 0 \leftarrow (SP + 1) PC ₁₁₋₀ \leftarrow (SP)(SP + 3)(SP + 2) SP \leftarrow SP + 4		
					• μ PD75066, 75068 MBE, 0, 0, PC ₁₂ \leftarrow (SP + 1) PC ₁₁₋₀ \leftarrow (SP)(SP + 3)(SP + 2) SP \leftarrow SP + 4		
	RETS		1	3 + S	• μ PD75064 MBE, 0, 0, 0 \leftarrow (SP + 1) PC ₁₁₋₀ \leftarrow (SP)(SP + 3)(SP + 2) SP \leftarrow SP + 4, then skip unconditionally		Un- condi- tional
					• μ PD75066, 75068 MBE, 0, 0, PC ₁₂ \leftarrow (SP + 1) PC ₁₁₋₀ \leftarrow (SP)(SP + 3)(SP + 2) SP \leftarrow SP + 4, then skip unconditionally		
	RETI		1	3	• μ PD75064 MBE, 0, 0, 0 \leftarrow (SP + 1) PC ₁₁₋₀ \leftarrow (SP)(SP + 3)(SP + 2) PSW \leftarrow (SP + 4)(SP + 5), SP \leftarrow SP + 6		
					• μ PD75066, 75068 MBE, 0, 0, PC ₁₂ \leftarrow (SP + 1) PC ₁₁₋₀ \leftarrow (SP)(SP + 3)(SP + 2) PSW \leftarrow (SP + 4)(SP + 5), SP \leftarrow SP + 6		
	PUSH	rp	1	1	$(SP - 1)(SP - 2) \leftarrow rp, SP \leftarrow SP - 2$		
		BS	2	2	$(SP-1) \leftarrow MBS, (SP-2) \leftarrow 0, SP \leftarrow SP-2$		
	POP	rp PC	1	1	$rp \leftarrow (SP + 1)(SP), SP \leftarrow SP + 2$		
		BS	2	2	$MBS \leftarrow (SP + 1), SP \leftarrow SP + 2$		

Group	Mne- monic	Operand	Bytes	Ma- chine cycle	Operation	Address- ing area	Skip condition
Interrupt	EI		2	2	$IME \leftarrow 1$		
control		IExxx	2	2	IExxx ← 1		
	DI		2	2	$IME \leftarrow 0$		
		IExxx	2	2	$IExxx \leftarrow 0$		
Input/	IN	A, PORTn	2	2	A ← PORTn (n = 0 - 6, 11)		
output		XA, PORTn	2	2	$XA \leftarrow PORTn+1, PORTn$ (n = 4, 6)		
	OUT	PORTn, A	2	2	$PORTn \leftarrow A$ (n = 2 - 6)		
		PORTn, XA	2	2	PORTn+1, PORTn \leftarrow XA (n = 4, 6)		
CPU	HALT		2	2	Set HALT Mode (PCC.2 \leftarrow 1)		
control	STOP		2	2	Set STOP Mode (PCC.3 \leftarrow 1)		
	NOP		1	1	No Operation		
Special	SEL	MBn	2	2	MBS ← n (n = 0, 1, 15)		
	GETI	taddr	1	3	• μ PD75064 • For the TBR instruction PC11-0 \leftarrow (taddr)3-0 + (taddr + 1) • For the TCALL instruction (SP - 4)(SP - 1)(SP - 2) \leftarrow PC11-0 (SP - 3) \leftarrow MBE, 0, 0, 0 PC11-0 \leftarrow (taddr)3-0 + (taddr + 1) SP \leftarrow SP - 4 • For other than the TBR and TCALL instruction (taddr) (taddr + 1) is executed.	*10	Depends on the refer- ence instruction.
					• μ PD75066, 75068 • For the TBR instruction PC ₁₂₋₀ \leftarrow (taddr) ₄₋₀ + (taddr + 1) • For the TCALL instruction (SP - 4)(SP - 1)(SP - 2) \leftarrow PC ₁₁₋₀ (SP - 3) \leftarrow MBE, 0, 0, PC ₁₂ PC ₁₂₋₀ \leftarrow (taddr) ₄₋₀ + (taddr + 1) SP \leftarrow SP - 4		
					 For other than the TBR and TCALL instruction (taddr) (taddr + 1) is executed. 		Depends on the refer- ence instruction.

Caution When executing the IN/OUT instruction, MBE must be set to 0, or MBE and MBS must be set to 1 and 15, respectively.

10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Con	ditions		Ratings	Unit
Power supply voltage	Vdd				-0.3 to +7.0	V
	Vii	Except ports 4 and 5			-0.3 to Vdd+0.3	v
Input voltage	N/	Ports 4 and 5 On-chip		pull-up resistor	-0.3 to Vdd+0.3	V
	Vı2			en-drain	–0.3 to +11	v
Output voltage	Vo				-0.3 to VDD+0.3	V
High level output	Юн	Per pin			-10	mA
current	ЮН	All output pins			-30	mA
Low level output					30	mA
current	. Note	One pin of ports 0, 3,	, 4, and 5	rms value	15	mA
		One pin of ports 2 an		Peak value	20	mA
	lo∟ ^{Note}	One pin of ports 2 an	10 0	rms value	5	mA
		Total of ports 0.2.4	and E	Peak value	160	mA
		Total of ports 0, 3, 4	and 5	rms value	120	mA
		Total of ports 2 and (Peak value	30	mA
		Total of ports 2 and 6	נ	rms value	20	mA
Operating ambient temperature	Topt				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note Rms value is calculated using the following expression: [rms value] = [peak value] $\times \sqrt{duty ratio}$

Caution If any of the items exceeds the absolute maximum ratings, even momentarily, this may damage product quality. The absolute maximum ratings are values that may physically damage products. Be sure to use the products within the ratings.

Main System Clock Oscillator Characteristics (Ta	a = -40 to +85 °C, VDD = 2.7 to 6.0 V)
--	--

Resonator	Recommended Constant	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
	Vss X1 X2	Oscillation frequency (f _x) ^{Note1}	V _{DD} = Oscilla- tion voltage range	1.0		5.0 Note3	MHz
		Oscillation stabilization time ^{Note2}				4	ms
	Vss X1 X2	Oscillation frequency (f _x) ^{Note1}		1.0	4.19	5.0 Note3	MHz
Crystal resonator		Oscillation	V _{DD} = 4.5 to 6.0 V			10	ms
		stabilization time ^{Note2}				30	ms
	X1 X2 µPD74HCU04	X1 input frequency (f _x) ^{Note1}		1.0		5.0 Note3	MHz
External clock		X1 input high-/low-level width (txн, tx∟)		100		500	ns

- **Notes 1.** The oscillation frequency indicates characteristics of the oscillator only. For the instruction execution time, refer to the AC characteristics.
 - 2. The oscillation stabilization time is the required time for oscillation to stabilize after the voltage level of VDD reaches the MIN. value of the oscillation voltage range or releasing the STOP mode.
 - 3. When the oscillation frequency is "4.19 MHz < fx \leq 5.0 MHz", selection of "PCC = 0011" with 1 machine cycle of less than 0.95 μ s for instruction execution time is not possible.
- Caution If the main system clock oscillator is used, the wiring in the area indicated with broken lines in the recommended constant illustration should be routed observing the points described below to avoid influence of wiring capacitance, etc.
 - Route as short as possible.
 - Do not cross the wires.
 - Route the wires away from lines where changing high current flows.
 - Make the connecting point of the capacitors in the oscillation circuit to have always the same potential as Vss. Do not route the connecting point to another ground pattern on the board where high current flows.
 - Do not use the oscillator as a signal source of other circuits.

Resonator	Recommended Constant	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
	Vss XT1 XT2	Oscillation frequency (fx⊤) ^{Note1}		32	32.768	50	kHz
Crystal resonator	Crystal		V _{DD} = 4.5 to 6.0 V		1.0	2	s
		Oscillation stabilization time ^{Note2}				10	S
	XT1 XT2	XT1 input frequency (f _{XT}) ^{Note1}		32		100	kHz
External clock		XT1 input high-/ low-level width (txтн,txт∟)		5		15	μs

Subsystem Clock Oscillator Characteristics (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

- **Notes 1.** The oscillation frequency indicates characteristics of the oscillator only. For the instruction execution time, refer to the AC characteristics.
 - **2.** The oscillation stabilization time is the required time for oscillation to stabilize after the voltage level of V_{DD} reaches the MIN. value of the oscillation voltage range.
- Caution If the subsystem clock oscillator is used, the wiring in the area indicated with broken lines in the recommended constant illustration should be routed observing the points described below to avoid influence of wiring capacitance, etc.
 - Route as short as possible.
 - Do not cross the wires.
 - Route the wires away from lines where changing high current flows.
 - Make the connecting point of the capacitors in the oscillation circuit to have always the same potential as Vss. Do not route the connecting point to another ground pattern on the board where high current flows.
 - Do not use the oscillator as a signal source of other circuits.

Especially when using the subsystem clock, be sure to design wiring so as to minimize noise. The subsystem clock oscillator uses a low-amplification circuit to minimize power dissipation. As a result, malfunctions due to noise are more liable to occur than with the main system clock oscillator.

Recommended Oscillator Constant

Main system clock: Ceramic ($T_a = -40$ to $+85^{\circ}C$)

Manufacturer	Part number	Frequency	Recomr circuit c	nended constant		lation e range	Remarks
		(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
	KBR-2.0 MS	2.00	47	47	2.5		
KYOCERA	PBRC 2.00A	2.00	47	47	2.5		
	KBR-4.19 MSA	4.19	33	33		6.0	
RTOCERA	PBRC 4.19A	4.15	55		2.7	6.0	
	KBR-4.19 MKS	4.19	Internal	Internal	2.7		
	KBR-4.19 MWS	4.15					
	CSB1000J ^{Note}	1.00	100	100	2.7		Rd = 5.6 kΩ
	CSA2.0MG040		100	100	2.8		
MURATA	CST2.0MGW093	2.00	Internal	Internal		6.0	
Manufacturing	CSAC2.0MGCME		15	15	2.7	0.0	Chip product
	CSA4.19MGU	4 10	30	30	2.1		
	CST4.19MGUW	4.19	Internal	Internal			

Note When the Murata's CSB1000J ceramic resonator (1.00 MHz) is used, the limiting resistor (Rd = 5.6 k Ω) is required (see figure below). When using other recommended resonators, the limiting resistor is not required.

Example of Recommended Main System Clock Circuit (when using CSB1000J of Murata)

Main System Clock: XTAL

Manufacturer	Part number	Frequency		mended constant		lation e range	Remarks	
		(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)		
	HC-49/U	2.00		8	2.8	6.0		
DAISINKU		4.19	8		2.7		$(T_a = -40 \text{ to } +85^{\circ}\text{C})$	
		5.00			2.7			
KINSEKI	HC-49/U	2.00		22	3.1	6.0	(T _a = −20 to +70°C)	
		4.19	22	22	3.2	0.0	$(1a = -20 \ (0 + 70 \ C))$	

DC Characteristics (Ta = -40 to +85 $^\circ\text{C},$ Vdd = 2.7 to 6.0 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
High-level input	VIH1	Ports 2, 3, and 11		0.7 Vdd		Vdd	V
voltage	VIH2	Ports 0,1,6, RESET		0.8 Vdd		Vdd	V
			On-chip pull-up resistor	0.7 Vdd		Vdd	V
	Vінз	Ports 4 and 5	N-ch open-drain	0.7 Vdd		10	V
	VIH4	X1, X2, XT1, XT2		VDD -0.5		Vdd	V
Low-level input	VIL1	Ports 2 through 5 an	d 11	0		0.3 VDD	V
voltage	VIL2	Ports 0, 1, 6, RESET		0		0.2 VDD	V
	VIL3	X1, X2, XT1, XT2		0		0.4	V
High-level output	Vон	VDD = 4.5 to 6.0 V , Ic	ин = −1 mA	VDD -1.0			V
voltage		Іон = –100 <i>µ</i> А		VDD -0.5			V
Low-level output voltage	Vol	Ports 4 and 5	V _{DD} = 4.5 to 6.0 V I _{OL} = 15 mA		0.7	2.0	V
		Port 3	V _{DD} = 4.5 to 6.0 V I _{OL} = 15 mA		0.3	2.0	V
		VDD = 4.5 to 6.0 V , Ic	u = 1.6 mA			0.4	V
		Iol = 400 μA				0.5	V
		SB0, SB1	N-ch open-drain pull-up resistor \ge 1 k Ω			0.2 VDD	V
High-level input	Ілні	VI = VDD	Other than pins below			3	μA
leakage current	ILIH2	$\mathbf{V}\mathbf{I} = \mathbf{V}\mathbf{D}\mathbf{D}$	X1, X2, XT1, XT2			20	μA
	Іцнз	V1 = 10 V	Ports 4 and 5 (N-ch open-drain)			20	μA
Low-level input	ILIL1		Other than pins below			-3	μA
leakage current	ILIL2	$V_i = 0 V$	X1, X2, XT1, XT2			-20	μA
High-level output	ILOH1	Vo = Vdd				3	μA
leakage current	Ісон2	Vo = 10 V	Ports 4 and 5 (N-ch open-drain)			20	μΑ
Low-level output leakage current	Ilol	Vo = 0 V				-3	μA
On-chip pull-up		P01, 02, 03,	VDD = 5.0 V ±10 %	15	40	80	kΩ
resistor	Ruı	Ports 1, 2, 3 and 6 VI = 0 V	V _{DD} = 3.0 V ±10 %	30		300	kΩ
	_	Ports 4 and 5	V _{DD} = 5.0 V ±10 %	15	40	70	kΩ
	R_{U2} $V_0 = V_{DD} - 2.0 V$		V _{DD} = 3.0 V ±10 %	10		60	kΩ

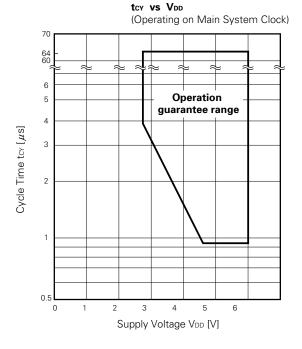
(Cont.)

DC Characteristics (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

Parameter	Symbol	Co	onditions			MIN.	TYP.	MAX.	Unit
Supply current Note1	IDDI		Vdd = 5	$V_{\text{DD}} = 5.0 \ \text{V} \pm 10 \ \% \ ^{\text{Note}3}$			2.0	6.0	mA
	וטטו	4.19 MHz ^{Note2}	Vdd = 3	.0 V ±	10 % ^{Note⁴}		0.2	0.6	mA
		crystal oscillation C1 = C2 = 22 pF	HALT	Vdd	= 5.0 V ±10 %		400	1200	μA
	TDD2		mode	Vdd	= 3.0 V ±10 %		120	400	μA
	IDD3	00 700 111 11.5	V_{DD} = 3.0 V ± 10 %				10	30	μA
	IDD4	32.768 kHz №te ⁵ crystal oscillation	HALT mode	Vdd	= 3.0 V ±10 %		5	15	μΑ
		XT1 = 0 V	VDD = 5	.0 V ±	10 %		0.5	20	μA
	IDD5		V _{DD} = 3.0 V ±10 9				0.1	10	μΑ
				- /-	T _a = 25 °C		0.1	5	μΑ

Notes 1. Current which flows in the on-chip pull-up resistor is not included.

- 2. Including oscillation of the subsystem clock.
- **3.** When the processor clock control register (PCC) is set to 0011 and the device is operated in the high-speed mode.
- **4.** When PCC is set to 0000 and the device is operated in the low-speed mode.
- **5.** When the system clock control register (SCC) is set to 1001 and the device is operated on the subsystem clock, with main system clock oscillation stopped.


Capacitance (Ta = 25 °C, VDD = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	С	f = 1 MHz Unmeasured pins returned to 0 V.			15	pF
Output capacitance	Co				15	pF
I/O capacitance	Сю				15	pF

AC Characteristics (T_a = -40 to +85 $^{\circ}$ C, V_{DD} = 2.7 to 6.0 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
CPU clock		Operating on main	V _{DD} = 4.5 to 6.0 V	0.95		64	μs
cycle time ^{№ote1} (minimum	tcy	system clock		3.8		64	μs
instruction execution time = 1 machine cycle)		Operating on subsys	Dperating on subsystem clock		122	125	μs
TI0 input	fтı	V _{DD} = 4.5 to 6.0 V	/pp = 4.5 to 6.0 V			1	MHz
frequency	TTI			0		275	kHz
TI0 input high and low level width	tтıн,	V _{DD} = 4.5 to 6.0 V		0.48			μs
low level width	t⊤ı∟			1.8			μs
Interrupt input high and low level width		INT0		Note2			μs
and low level width	tinth, tintl	INT1, INT2, INT4	INT1, INT2, INT4				μs
		KR0 to KR3		10			μs
RESET low level width	trsl			10			μs

- Notes 1. The cycle time (minimum instruction execution time) of the CPU clock (Φ) is determined by the oscillation frequency of the connected resonator, the system clock control register (SCC), and the processor clock control register (PCC). The figure at the right indicates the cycle time tcv versus supply voltage VoD characteristic with the main system clock operating.
 - **2.** 2tcy or 128/fx is set by setting the interrupt mode register (IM0).

Serial Transfer Operation

2-Wire and 3-Wire Serial I/O Modes (SCK ... Internal clock output)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy1	V _{DD} = 4.5 to 6.0 V		1600			ns
	LKCYT			3800			ns
SCK high- and low- level width	t ĸ∟1	V _{DD} = 4.5 to 6.0 V		tксү1/2-50			ns
	t кн1			t ксү1/ 2-150			ns
SI setup time (to SCK↑)	tsıkı						ns
SI hol <u>d time</u> (from SCK↑)	tksi1						ns
SO output delay time	tkso1	$\label{eq:RL} \begin{array}{l} R_{L} = 1 \ k\Omega, \\ C_{L} = 100 \ pF^{Note} \end{array}$	VDD = 4.5 to 6.0 V	0		250	ns
from SCK↓	1501			0		1000	ns

2-Wire and 3-Wire Serial I/O Modes (SCK ... External clock input)

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	•	V _{DD} = 4.5 to 6.0 V		800			ns
	tксү2			3200			ns
SCK high- and low-	tĸ∟2	V _{DD} = 4.5 to 6.0 V		400			ns
level width	tкн2			1600			ns
SI setup time (to SCK↑)	tsik2						ns
SI hol <u>d tim</u> e (from SCK ↑)	tksi2			400			ns
SO output		$\label{eq:RL} \begin{array}{l} R_L = 1 \ k\Omega, \\ C_L = 100 \ pF^{\ \text{Note}} \end{array}$	V _{DD} = 4.5 to 6.0 V	0		300	ns
delay <u>time</u> from SCK↓	tkso2			0		1000	ns

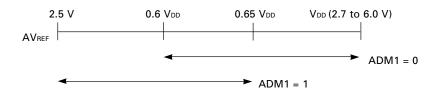
Note RL and CL are load resistance and load capacitance of the SO output line, respectively.

SBI Mode ((SCK	Internal	clock	output	(Master))
------------	------	----------	-------	--------	-----------

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	•	V _{DD} = 4.5 to 6.0 V		1600			ns
	tксүз			3800			ns
SCK high- and low-level width	tĸ∟3	V _{DD} = 4.5 to 6.0 V		tксүз/2-50			ns
width	tкнз			tксүз/2-150			ns
SB0 <u>, 1 s</u> etup time (to SCK ↑)	tsıкз						ns
SB0, 1 hold time (from SCK ↑)	tкsıз						ns
SB0, 1 output	t ue e -	R∟ = 1 kΩ,	V _{DD} = 4.5 to 6.0 V	0		250	ns
delay time from SCK \downarrow	tкsoз	C∟ = 100 pF ^{Note}		0		1000	ns
SB0, 1 \downarrow from SCK \uparrow	tкsв			tксүз			ns
$\overline{SCK}\downarrowfromSB0,1\downarrow$	tsвк			tксүз			ns
SB0, 1 low-level width	t sbl			tксүз			ns
SB0, 1 high-level width	tsвн			tксүз			ns

SBI Mode (SCK ... External clock input (Slave))

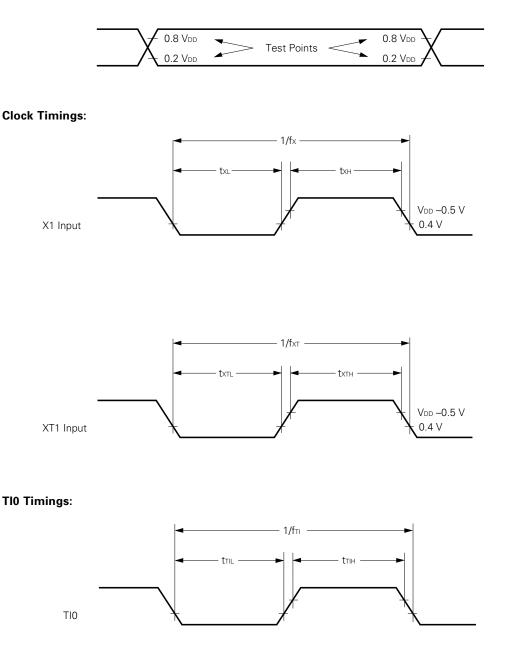
Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	t	V _{DD} = 4.5 to 6.0 V		800			ns
	tkcy4			3200			ns
SCK high- and low-level	tĸL4	V _{DD} = 4.5 to 6.0 V		400			ns
width	tкн4			1600			ns
SB0 <u>, 1</u> setup time (to SCK ↑)	tsik4						ns
SB0, 1 <u>hol</u> d time (from SCK ↑)	tksi4						ns
SB0, 1 output	tkso4	R∟ = 1 kΩ,	V _{DD} = 4.5 to 6.0 V	0		300	ns
delay time from SCK ↓	LKSO4	$C_L = 100 \text{ pF}^{Note}$		0		1000	ns
SB0, 1 \downarrow from SCK \uparrow	tкsв			t ксү4			ns
$\overline{SCK}\downarrowfrom\;SB0,1\uparrow$	tsвк			tkcy4			ns
SB0, 1 low-level width	ts₿L			t ксү4			ns
SB0, 1 high-level width	tsвн			t ксү4			ns


Note RL and CL are load resistance and load capacitance, respectively, for the SB0 and SB1 output lines.

A/D Converter (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V, AVss = Vss = 0 V)

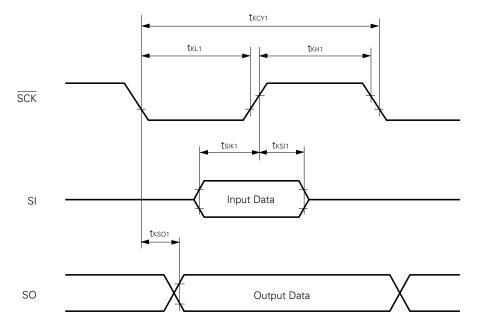
Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Resolution				8	8	8	bit
Absolute		O E M C ANG C Mote?	$-10 \leq T_a \leq +85 \ ^{\circ}C$			±1.5	LSB
accuracy ^{Note1}		$2.5 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{V}_{\text{DD}}^{\text{Note2}}$	$-40 \leq T_a < -10 \ ^{\circ}C$			±2.0	LSB
Conversion time ^{Note3}	tconv					168/fx	μs
Sampling time ^{Note4}	t SAMP					44/fx	μs
Reference input voltage	AVREF			2.5		Vdd	V
Analog input voltage	VIAN			AVss		AVREF	V
Analog input impedance	Ran				1000		MΩ
AVREF current	AIREF				0.7	2.0	mA

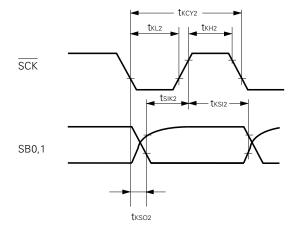
Notes 1. Absolute accuracy excluding quantization error (±1/2 LSB)


 ADM1 should be set according to the A/D converter reference voltage (AVREF) as follows: When the AVREF is between 0.6VDD and 0.65VDD, either 1 or 0 can be set.

- 3. The time from conversion start instruction execution to conversion end (EOC=1) (40.1 μ s : at fx = 4.19 MHz)
- 4. The time from conversion start instruction execution to sampling end (10.5 μ s : at fx = 4.19 MHz)

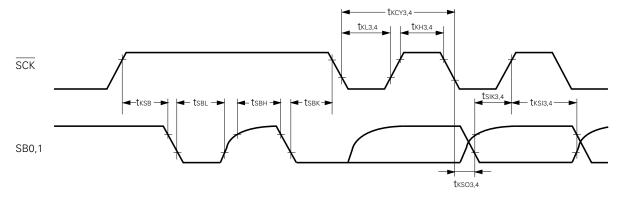
NEC

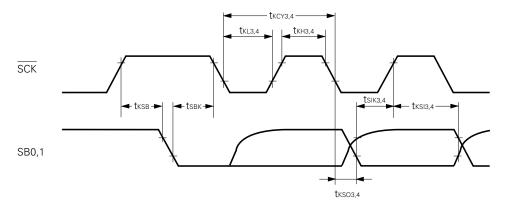

AC Timing Test Points (excluding X1 and XT1 inputs):


NEC

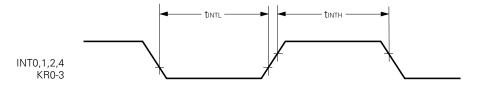
Serial Transfer Timing

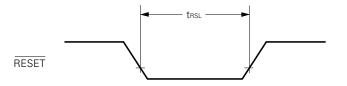
3-wire serial I/O mode:


2-wire serial I/O mode:


NEC

Serial Transfer Timing


Bus release signal transfer:

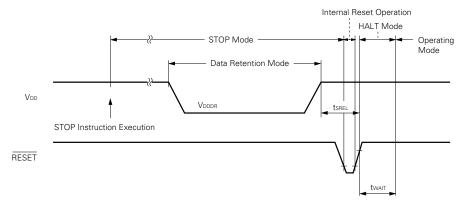

Command signal transfer:

Interrupt Input Timing

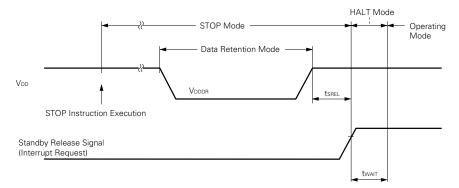
RESET Input Timing

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (Ta = -40 to +85 °C)

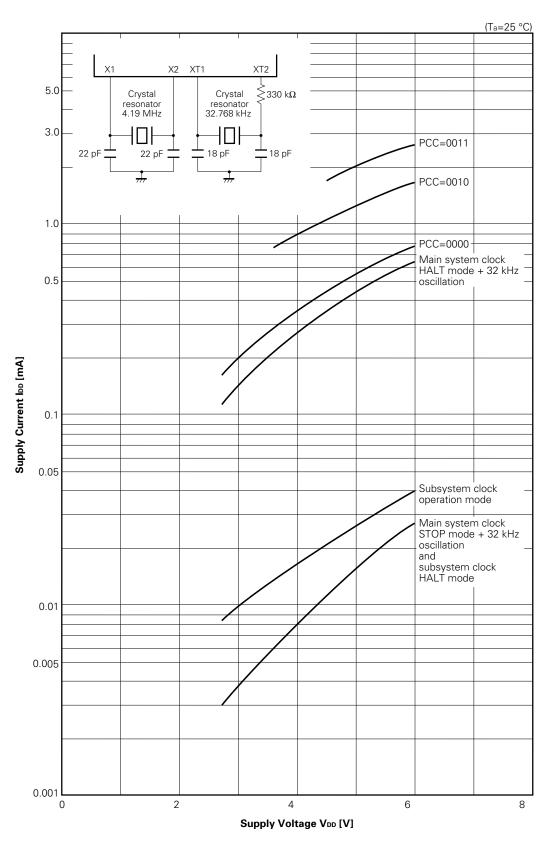
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		2.0		6.0	V
Data retention supply current Note1	Idddr	VDDDR = 2.0 V		0.1	10	μA
Release signal setting time	t srel		0			μs
Oscillation stabilization wait time ^{Note2}	twait	Release by RESET		2 ¹⁷ /fx		ms
	LWAII	Release by interrupt request		Note3		ms

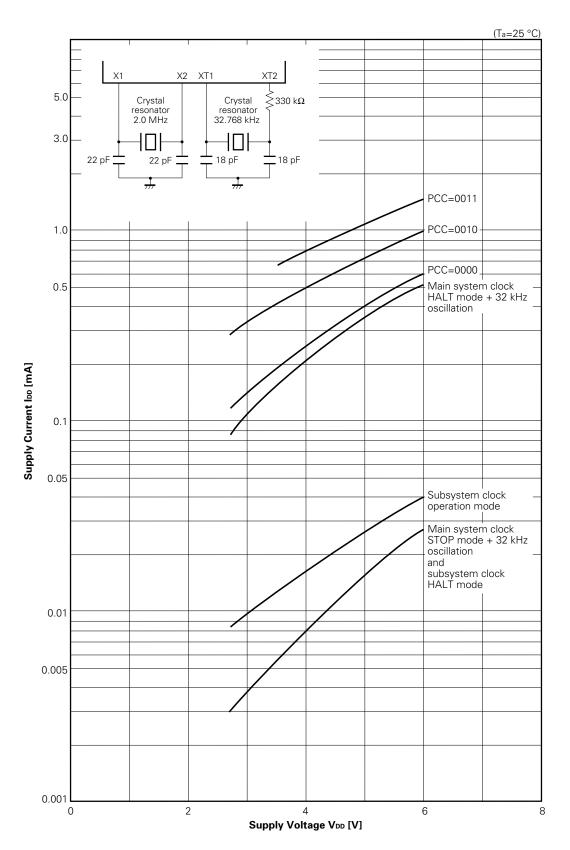

Notes 1. Current which flows in the on-chip pull-up resistor is not included.

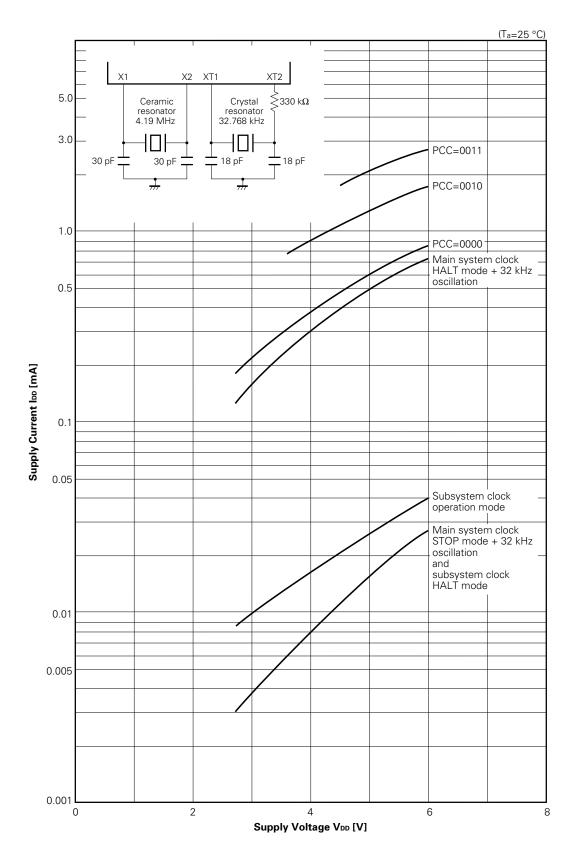
2. The oscillation stabilization wait time is the time during which the CPU operation is stopped to prevent unstable operation at the oscillation start.

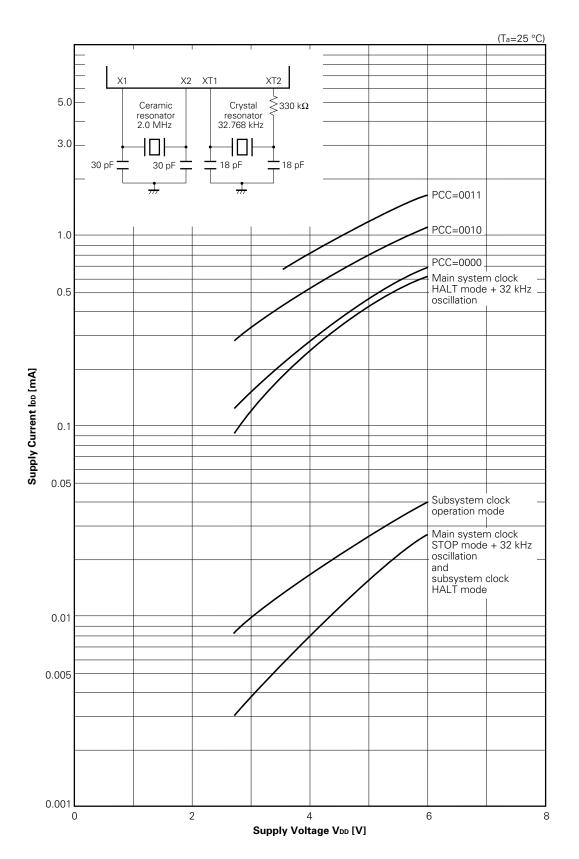

3. Depends on the basic interval timer mode register (BTM) settings (See the table below).

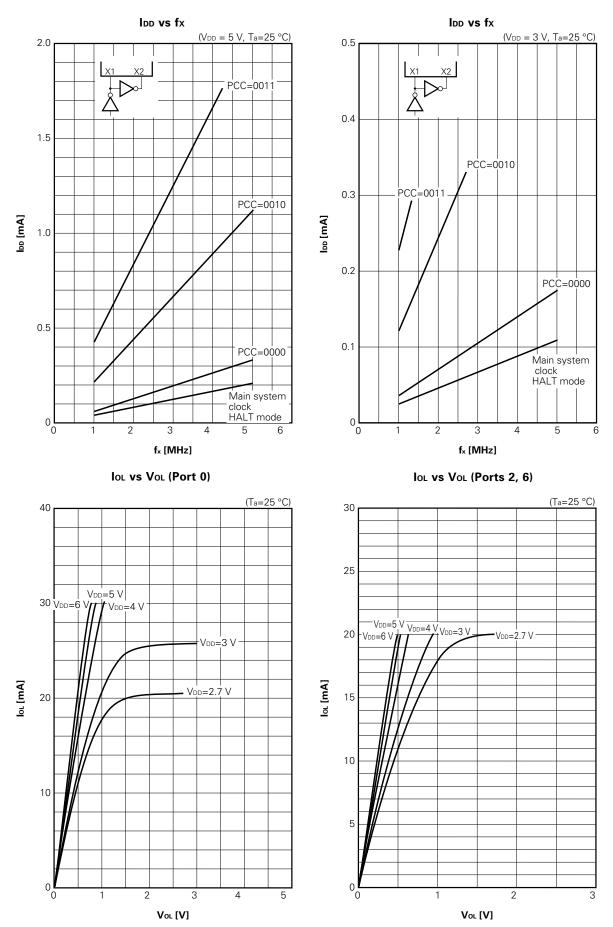
втмз	BTM2	BTM1	BTM0	Wait Time (Figures in parentheses are for operation at fx = 4.19 MHz)
_	0	0	0	2 ²⁰ /fx (approx. 250 ms)
	0	1	1	2 ¹⁷ /fx (approx. 31.3 ms)
_	1	0	1	2 ¹⁵ /fx (approx. 7.82 ms)
_	1	1	1	2 ¹³ /fx (approx. 1.95 ms)

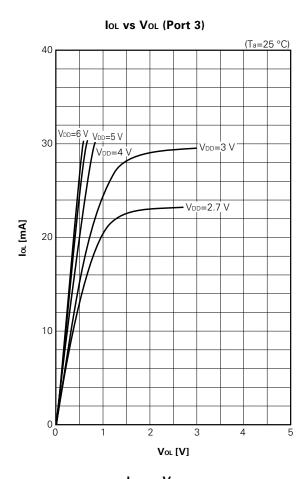

Data Retention Timing (STOP mode release by RESET)

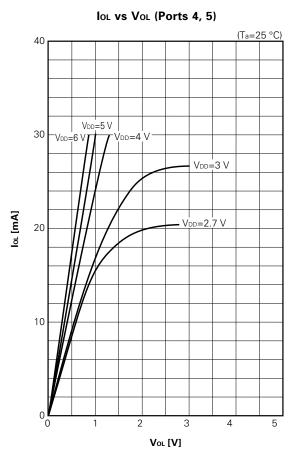

Data Retention Timing (Standby release signal: STOP mode release by interrupt signal)

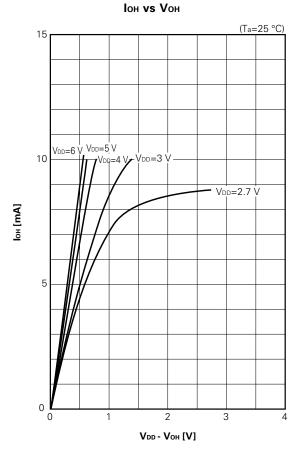

11. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)


IDD vs VDD (Main system clock: 4.19-MHz crystal resonator)

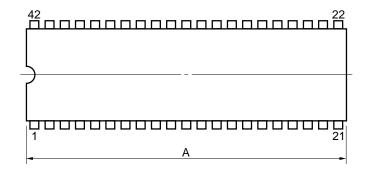

IDD vs VDD (Main system clock: 2.0-MHz crystal resonator)

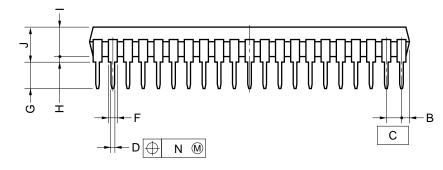


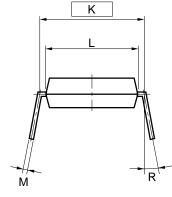

IDD vs VDD (Main system clock: 4.19-MHz ceramic resonator)



IDD vs VDD (Main system clock: 2.0-MHz ceramic resonator)



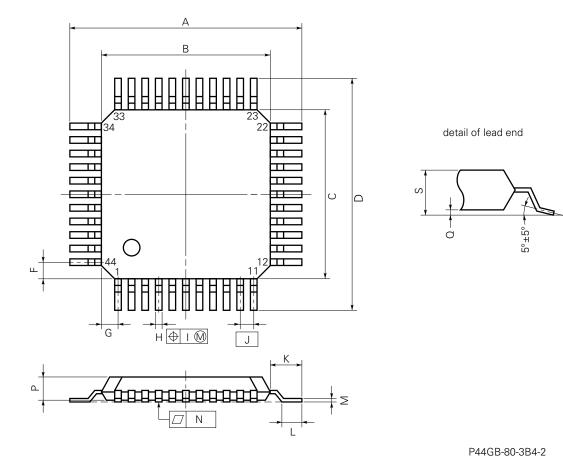




12. PACKAGE DRAWINGS

42PIN PLASTIC SHRINK DIP (600 mil)

NOTES


- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
А	39.13 MAX.	1.541 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	15.24 (T.P.)	0.600 (T.P.)
L	13.2	0.520
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
Ν	0.17	0.007
R	0~15°	0~15°
		P42C-70-600A-1

P42C-70-600A-1

Remark The outline dimensions and materials of ES versions are the same as for mass-produced versions.

44 PIN PLASTIC QFP (10)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

17584		
ITEM	MILLIMETERS	INCHES
А	13.6±0.4	$0.535\substack{+0.017\\-0.016}$
В	10.0±0.2	$0.394^{+0.008}_{-0.009}$
С	10.0±0.2	$0.394\substack{+0.008\\-0.009}$
D	13.6±0.4	$0.535\substack{+0.017 \\ -0.016}$
F	1.0	0.039
G	1.0	0.039
Н	0.35±0.10	$0.014^{+0.004}_{-0.005}$
Ι	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
К	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15\substack{+0.10 \\ -0.05}$	$0.006\substack{+0.004\\-0.003}$
Ν	0.12	0.005
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

Remark The outline dimensions and materials of ES versions are the same as for mass-produced versions.

***** 13. RECOMMENDED SOLDERING CONDITIONS

Solder the μPD75064, 75066, 75068 under the soldering conditions indicated below. For further information on the recommended soldering conditions, refer to information document **"SEMI-CONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (IEI-1207)"**.

For soldering methods and conditions other than those of recommended, consult NEC.

Table 13-1. Soldering Conditions for Surface Mounting Devices

μ PD75064GB- \times -3B4 : 44-pin plastic QFP (10 x 10 mm)
μPD75066GB-xxx-3B4: 44-pin plastic QFP (10 x 10 mm)
μPD75068GB-xxx-3B4: 44-pin plastic QFP (10 x 10 mm)
μPD75064GB(A)-xxx-3B4 : 44-pin plastic QFP (10 x 10 mm)
μPD75066GB(A)-xxx-3B4: 44-pin plastic QFP (10 x 10 mm)
μPD75068GB(A)-xxx-3B4: 44-pin plastic QFP (10 x 10 mm)

Soldering method	Soldering conditions	Symbol
Infrared ray reflow	 Peak temperature of package surface : 235 °C, Time : 30 seconds max. (210 °C min.), Number of reflow processes : 2 or less <note></note> (1) Start second reflow after the device temperature, which rose because of the first reflow, has dropped to the normal level. (2) Do not clean the flux with water after the first reflow. 	IR35-00-2
VPS	 Peak temperature of package surface : 215 °C, Time : 40 seconds max. (200 °C min.), Number of reflow processes : 2 or less <note></note> (1) Start second reflow after the device temperature, which rose because of the first reflow, has dropped to the normal level. (2) Do not clean the flux with water after the first reflow. 	VP15-00-2
Wave soldering	Solder temperature : 260 °C max., Time : 10 seconds max., Number of reflow processes : 1 Preheating temperature : 120 °C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature : 300 °C max., Time : 3 seconds max., (per one side of device)	—

Caution Do not apply two or more soldering methods (except partial heating method) to the same device.

Table 13-2. Soldering Conditions for Through-Hole Type Devices

 $\begin{array}{l} \mu \text{PD75064CU-} \times \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75066CU-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75064CU(A)-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75066CU(A)-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75066CU(A)-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD75068CU(A)-} \times &: \ \textbf{42-pin plastic shrink DIP (600 mil)} \\ \mu \text{PD$

Soldering method	Soldering conditions	
Wave soldering (Only leads)	Soldering bath temperature: 260 °C max., Time: 10 seconds max.	
Partial heating	Pin temperature: 300 °C max., Time: 3 seconds max. (per pin)	

Caution Solder only the leads by means of wave soldering , and exercise care that the jetted solder does not come in contact with the package.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are provided for the development of a system which employs the μ PD75064, 75066, 75068, 75064(A), 75066(A), 75068(A).

Hardware	IE-75000-R Note1		In-circuit emulator for 75X series
	IE-75001-R		
	IE-75000-R-EM Note2 EP-75068CU-R		Emulation board for IE-75000-R or IE-75001-R
			Emulation probe for all shrink DIP versions of this series
	EP-75068GE	3-R EV-9200G-44	Emulation probe for all QFP versions of this series. A 44-pin conversion socket EV-9200G-44 is contained in this product.
	PG-1500 PA-75P008CU		PROM programming equipment
			An adapter for connecting the PG-1500 to the μ PD75P068CU/GB.
Software	tware IE control program PG-1500 controller		Host machines:
			PC-9800 series (MS-DOS [™] Ver. 3.30 to Ver. 5.00A ^{Note3})
	RA75X relocatable assem- bler		IBM PC/AT [™] (refer to OS for IBM PC)

Notes 1. Available for maintenance only

- 2. The IE-75000-R-EM is not installed in the IE-75001-R.
- 3. Ver. 5.00/5.00A has the task swap function, but it cannot be used with this software.

★ OS for IBM PC

The following products are supported as OS for IBM PCs.

OS	Version
PC DOS™	Ver. 5.02 to Ver. 6.1
MS-DOS	Ver. 3.30 to Ver. 5.00 Note1, 5.0/V Note2
IBM DOS™	J5.02/V Note2

- Notes 1. Ver. 5.0 and later have the task swap function, but it cannot be used with this software.
 - 2. Only the English mode is supported.
- **Remark** For development tools supplied by third-party manufacturers, refer to **75X Series Selection Guide** (IF-1027).

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents related to device

Document	Doc. No.
User's Manual	IEU-1366
Instruction Quick Reference	_
Application Note	IEA-1296
75X Series Selection Guide	IF-1027

Documents related to development tool

Document			Doc. No.
Hardware	IE-75000-R/IE-75001-R User's Manual		EEU-1416
	IE-75000-R-EM User's Manual		EEU-1294
	EP-75068CU-R User's Manual		EEU-1429
	EP-75068GB-R User's Manual		EEU-1428
	PG-1500 User's Manual		EEU-1335
Software	RA75X Assembler Package User's Manual	Operation	EEU-1346
		Language	EEU-1363
	PG-1500 Controller User's Manual		EEU-1291

Other related documents

Document	Doc. No.
Package Manual	IEI-1231
Semiconductor Device Mounting Technology Manual	IEI-1207
Quality Grades on NEC Semiconductor Devices	
NEC Semiconductor Device Reliability/Quality Control System	
Electrostatic Discharge (ESD) Test	
Guide to Quality Assurance for Semiconductor Devices	
Microcomputer-Related Product Guide - Third Party Products	

Caution The contents of the documents listed above are subject to change without prior notice to users. Make sure to use the latest edition when starting design. [MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6

MS-DOS is a trademark of Microsoft Corporation. IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.