

MOS INTEGRATED CIRCUIT μ PD75P068

4 BIT SINGLE-CHIP MICROCOMPUTER

The μ PD75P068 is produced by replacing the internal mask ROM of the μ PD75068 with a one-time PROM in which data can be written once.

The following user's manual describes the details of the functions of the μ PD75P068. Be sure to read it before designing an application system.

 μ PD75068 User's Manual: IEU-1366

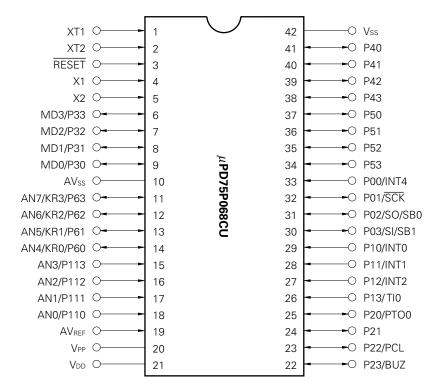
FEATURES

- Compatible with the μ PD75068
 - Can be replaced with the μ PD75068 containing mask ROM on a full-production basis.
- Internal one-time PROM: 8064 words × 8 bits
- Internal RAM: 512 words × 4 bits
- Internal pull-up resistors can be specified with software: Ports 0 to 3 and 6
- N-ch open-drain input-output: Ports 4 and 5
- Can operate at low voltage: VDD = 2.7 to 6.0 V

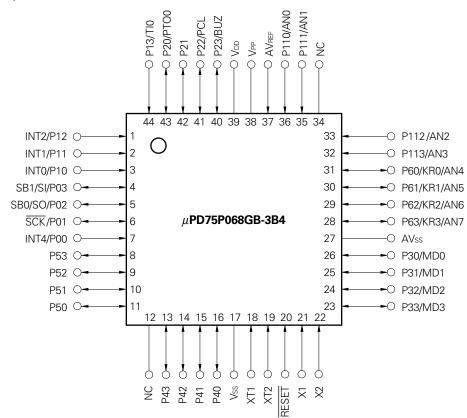
ORDERING INFORMATION

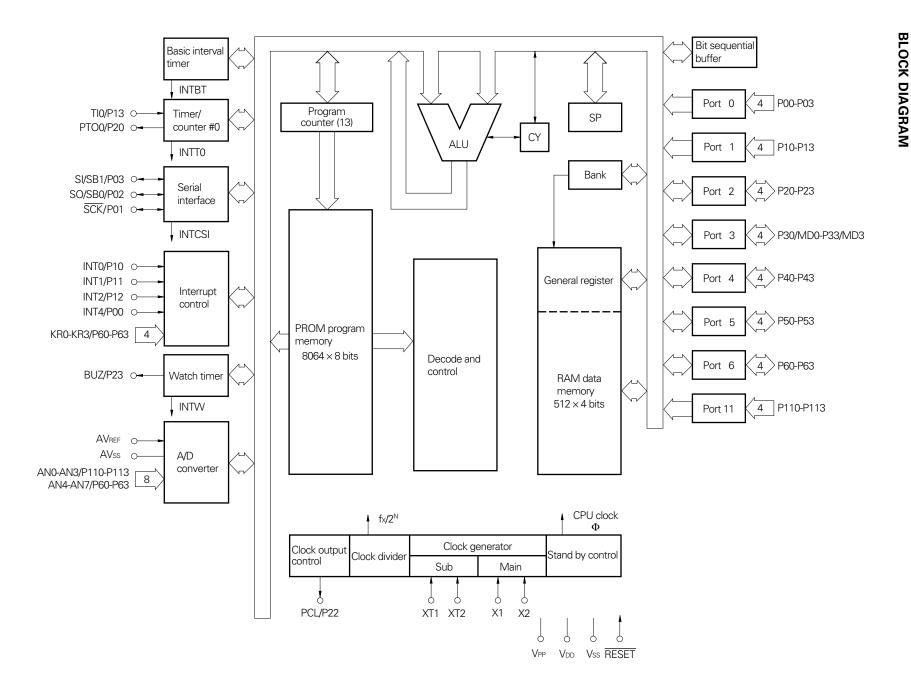
Part number	Package	Quality grade
μPD75P068CU	42-pin plastic shrink DIP (600 mil)	Standard
μ PD75P068GB-3B4	44-pin plastic QFP (Square 10 mm)	Standard

Caution The μ PD75P068 is not provided with mask-selected pull-up resistors.


Please refer to "Quality Grades on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.




PIN CONFIGURATION (TOP VIEW)

• 42-pin plastic shrink DIP

• 44-pin plastic QFP

CONTENTS

	1.	PIN FUNCTIONS	
		1.1 PORT PINS	5
		1.2 NON-PORT PINS	6
		1.2 NON-PORT PINS	7
	2.	DIFFERENCE BETWEEN THE μ PD75P068 AND μ PD75068	9
	3.	WRITING TO AND VERIFYING PROM (PROGRAM MEMORY)	10
		3.1 OPERATING MODES WHEN WRITING TO AND VERIFYING THE PROGRAM MEMORY	10
		3.2 WRITING TO THE PROGRAM MEMORY	
		3.3 READING THE PROGRAM MEMORY	12
*	4.	SCREENING ONE-TIME PROM PRODUCTS	13
	5.	ELECTRICAL CHARACTERISTICS	14
*	6.	CHARACTERISTIC CURVES (FOR REFERENCE)	27
	7.	PACKAGE DRAWINGS	33
*	8.	RECOMMENDED SOLDERING CONDITIONS	35
	ΑP	PENDIX A DEVELOPMENT TOOLS	36
	ΑP	PENDIX B RELATED DOCUMENTS	37

1. PIN FUNCTIONS

1.1 PORT PINS

Pin	Input/ output	Shared pin	Function	8 bit I/O	When reset	I/O circuit type ^{Note} 1
P00	Input	INT4	4-bit input port (PORT0).			B
P01	I/O	SCK	For P01-P03, pull-up resistors can be provided by software in units of 3 bits.			F-A
P02	I/O	SO/SB0	provided by software in units of 5 bits.	×	Input	F-B
P03	I/O	SI/SB1				M -C
P10		INT0	With noise elimination function	1		
P11	1	INT1	4-bit input port (PORT1).			
P12	Input	INT2	Pull-up resistors can be provided by software in units of 4 bits.	×	Input	B -C
P13		TI0	software in units of 4 bits.			
P20		PTO0	4-bit I/O port (PORT2).			
P21		_	Pull-up resistors can be provided by			
P22	I/O	PCL	software in units of 4 bits.	×	Input	E-B
P23		BUZ				
P30Note 2		MD0	Programmable 4-bit I/O port (PORT3).			
P31Note 2		MD1	I/O can be specified bit by bit.			
P32Note 2	I/O	MD2	Pull-up resistors can be provided by software in units of 4 bits.	×	Input	E-B
P33Note 2		MD3	,			
P40-P43Note 2	I/O	_	N-ch open-drain 4-bit I/O port (PORT4). Withstand voltage of 10 V Data input-output (low-order 4 bits) when writing to and verifying program memory (PROM)		High Impedance	M-A
P50-P53Note 2	I/O	_	N-ch open-drain 4-bit I/O port (PORT5). Withstand voltage of 10 V Data input-output (high-order 4 bits) when writing to and verifying program memory (PROM)	0	High Impedance	M-A
P60		KR0/AN4	Programmable 4-bit I/O port (PORT6).			
P61	I/O	KR1/AN5	Pull-up resistors can be provided by software in units of 4 bits.	×	Input	(Y)-D
P62	1/0	KR2/AN6	Software in units of 4 bits.		πραι	
P63		KR3/AN7				
P110		AN0	4-bit input port (PORT11)			
P111	ا المستنبط	AN1		×	Input	Y-A
P112	Input	AN2			Input	.,,
P113		AN3				

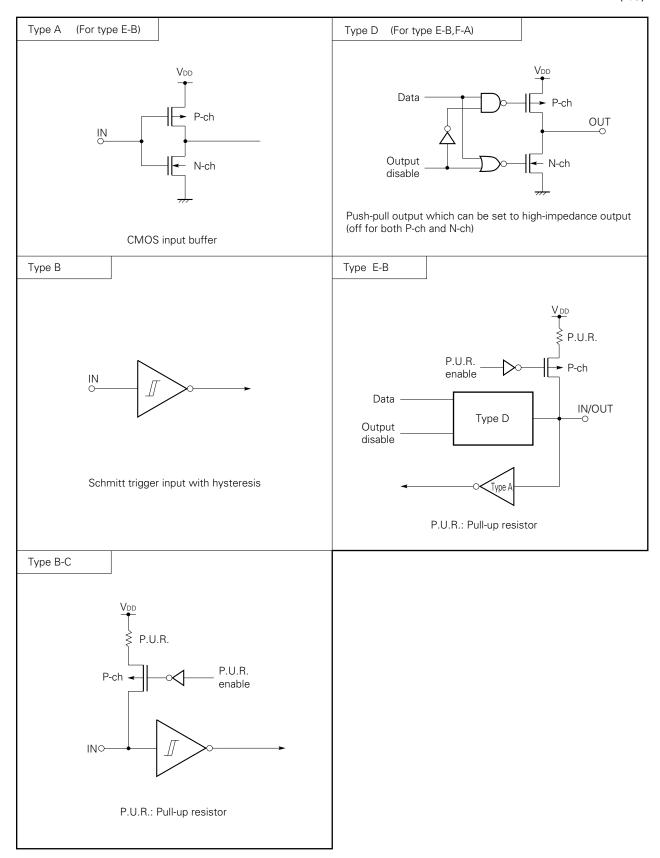
Notes 1. The circle (○) indicates the Schmitt trigger input.

2. Can directly drive the LED.

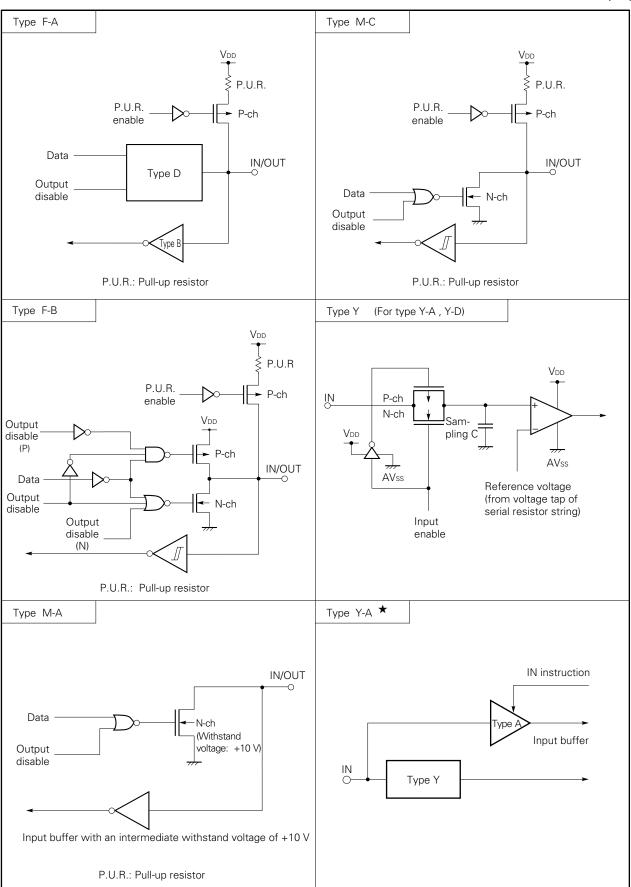
1.2 NON-PORT PINS

Pin	Input/ output	Shared pin	Fun	When reset	I/O circuit type ^{Note} 1	
TI0	Input	P13	Input for receiving extern timer/event counter	nal event pulse signal for	Input	В-с
PTO0	I/O	P20	Timer/event counter outp	out	Input	E-B
PCL	I/O	P22	Clock output		Input	E-B
BUZ	I/O	P23	Output for arbitrary frequoutput or system clock tr		Input	E-B
SCK	I/O	P01	Serial clock I/O		Input	F-A
SO/SB0	I/O	P02	Serial data output Serial bus I/O		Input	F-B
SI/SB1	I/O	P03	Serial data input Serial bus I/O		Input	M -c
INT4	Input	P00	Edge detection vectored rising edge or falling edg		Input	B
INT0 INT1	Input	P10 P11	Edge detection vectored edge selectable)	interrupt input (detection	Input	B -C
INT2	Input	P12	Edge detection testable in detection)	Input	B -C	
KR0-KR3	I/O	P60-P63/ AN4-AN7	Parallel falling edge detection testable input		Input	Ŷ-D
AN0-AN3	Input	P110-P113				Y-A
AN4-AN7	I/O	P60-P63/ KR0-KR3	For A/D converter only	8-bit analog input	_	Ŷ-D
AVREF	Input	_		Reference voltage input	_	Z
AVss	_	_		GND potential	_	Z
X1, X2	Input	_	Crystal/ceramic connectic generation. When externation is applied to X1, and its rapplied to X2.	al clock signal is used, it	_	_
XT1, XT2	Input	_	When external clock sign XT1, and its reverse phase	Crystal connection for subsystem clock generation. When external clock signal is used, it is applied to XT1, and its reverse phase signal is applied to XT2. XT1 can be used as a 1-bit input (test).		
RESET	Input	-	System reset input		_	B
MD0-MD3	I/O	P30-P33	Mode selection when wri program memory (PROM		Input	E-B
V _{PP} Note 2	_	_	Programming voltage ap or verifying program men Directly connected to Von +12.5 V is applied when of when the PROM is verified	_	_	
V _{DD}	_	_	Main power supply		_	_
Vss	_	_	GND potential		_	_

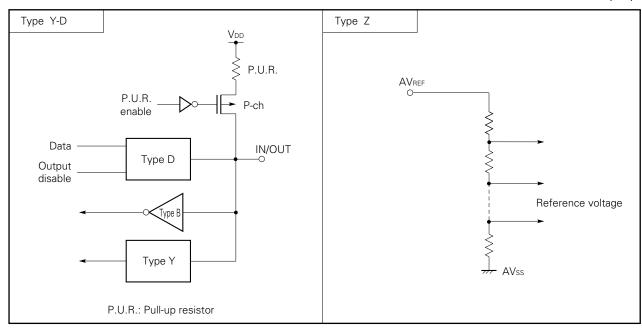
Notes 1. The circle (O) indicates the Schmitt trigger input.


2. Unless the VPP pin is directly connected to the VDD pin during normal operation, the μ PD75P068 does not operate normally.

1.3 PIN INPUT/OUTPUT CIRCUITS


The input/output circuit of each μ PD75P068 pin is shown below in a simplified manner.

(1/3)



NEC

(2/3)

(3/3)

2. DIFFERENCE BETWEEN THE μ PD75P068 AND μ PD75068

The μ PD75P068 is produced by replacing the internal mask ROM (program memory) of the μ PD75068 with a one-time PROM in which data can be written once. Both have the same CPU function and internal hardware. Table 2-1 shows the difference between the μ PD75P068 and μ PD75068.

For details of the CPU function and internal hardware, refer to the individual references for the μ PD75068.

Table 2-1 Difference between the μ PD75P068 and μ PD75068

ltem		μ PD75P068 μ PD75P068 (One-time PROM product) (Mask ROM product)			
Program memory		 0000H to 1F7FH 8064 words × 8 bits 			
Pull-up resistor	Ports 0 to 3 and 6	Can be specified with software.			
	Ports 4 and 5	None	Mask option		
XT1 feedback resis	stor	Contained	Mask option		
Operating supply	voltage range	2.7 to 6.0 V			
Pin function	Pins 6 to 9 of SDIP Pins 23 to 26 of QFP	P30/MD0 to P33/MD3	P30 to P33		
	Pin 20 of SDIP Pin 38 of QFP	V _{PP} IC			
Electrical characte	ristics	They differ in consumption current. For details, refer to the corresponding items in each data sheet.			
Others		Since they differ in circuit scale and mask layout, they differ in noise immunity and noise radiation.			

Caution The PROM and mask ROM products differ in noise immunity and noise radiation. Use not ES products but CS products (mask ROM products) to evaluate them thoroughly when considering the change from the PROM products to the mask ROM products during processes from preproduction to volume production.

3. WRITING TO AND VERIFYING PROM (PROGRAM MEMORY)

The program memory in the μ PD75P068 is a one-time PROM which consists of 8064 words \times 8 bits. Writing to and verifying the contents of the one-time PROM is accomplished using the pins shown in the table below. Note that address inputs are not used; instead, the address is updated using the clock input from the X1 pin.

Pin name	Function
VPP	Voltage is applied to this pin when writing to the program memory or verifying its contents (normally VDD electric potential).
X1, X2	Address update clock inputs used when writing to the program memory or verifying its contents. The X2 pin is used to input the inverted signal of the X1 pin input.
MD0 to MD3 (P30 to P33)	Operation mode selection pins used when writing to the program memory or verifying its contents.
P40 to P43 (low-order four bits) P50 to P53 (high-order four bits)	I/O pins for 8-bit data used when writing to the program memory or verifying its contents.
VDD	Power voltage is applied to this pin. During normal operation, 2.7 to 6.0 V should be applied; 6 V should be applied when writing to the program memory or verifying its contents.

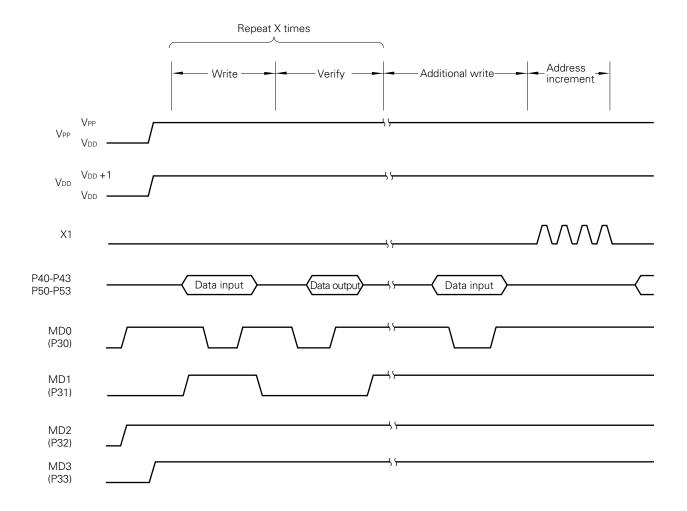
Caution Since the μ PD75P068CU/GB does not have an erasure window, the contents of the memory can not be erased with ultraviolet radiation.

3.1 OPERATING MODES WHEN WRITING TO AND VERIFYING THE PROGRAM MEMORY

If +6 V is applied to the V_{DD} pin and +12.5 V is applied to the V_{PP} pin, the μ PD75P068 enters program memory write/verify mode. The specific operating mode is then selected by setting the MD0 through MD3 pins as listed below. The remaining pins are all connected to Vss via pull-down resistors.

	Оре	rating mod	Operating mode					
V _{PP}	V _{DD}	MD0	MD1	MD2	MD3	Operating mode		
		Н	L	H L Program m		Program memory address clear mode		
+12.5 V	+6 V	L	Н	Н	Н	Write mode		
112.0		L	L	Н	Н	Verify mode		
		Н	×	Н	Н	Program inhibit mode		

× indicates L or H.

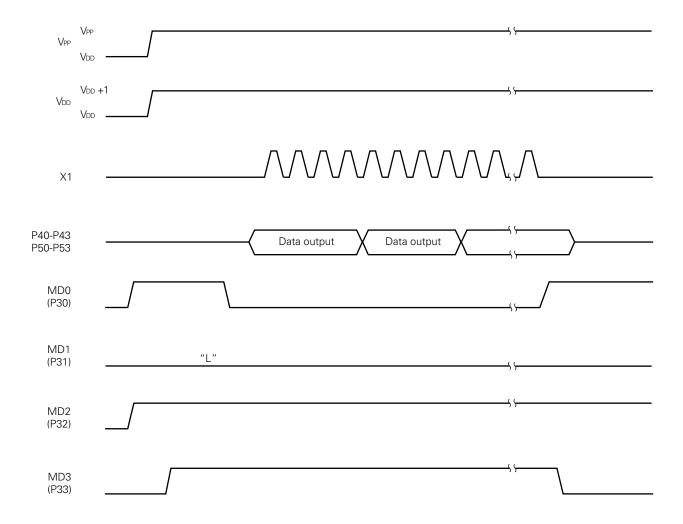


3.2 WRITING TO THE PROGRAM MEMORY

The procedure for writing to program memory is described below; high-speed write is possible.

- (1) Connect all unused pins to Vss through resistors. Apply a low-level signal to the X1 pin.
- (2) Apply 5 V to VDD and VPP pins.
- (3) Wait 10 μ s.
- (4) Select program memory address clear mode.
- (5) Apply +6 V to V_{DD} and +12.5 V to V_{PP}.
- (6) Select program inhibit mode.
- (7) Select write mode for 1 ms duration and write data.
- (8) Select program inhibit mode.
- (9) Select verify mode. If write is successful, proceed to step (10). If write fails, repeat steps (7) to (9).
- (10) Perform additional write for (Number (X) of repetitions of steps (7) to (9)) \times 1 ms duration.
- (11) Select program inhibit mode.
- (12) Increment the program memory address by inputting four pulses on the X1 pin.
- (13) Repeat steps (7) to (12) until the last address is reached.
- (14) Select program memory address clear mode.
- (15) Apply 5 V to VDD and VPP pins.
- (16) Turn the power off.

The timing for steps (2) to (12) is shown below.



3.3 READING THE PROGRAM MEMORY

The procedure for reading the contents of program memory is described below. The read is performed in the verify mode.

- (1) Connect all unused pins to Vss through resistors. Apply a low-level signal to the X1 pin.
- (2) Apply 5 V to VDD and VPP pins.
- (3) Wait 10 μ s.
- (4) Select program memory address clear mode.
- (5) Apply +6 V to VDD and +12.5 V to VPP.
- (6) Select program inhibit mode.
- (7) Select verify mode. Data is output sequentially one address at a time for each cycle of four clock pulses appearing on the X1 pin.
- (8) Select program inhibit mode.
- (9) Select program memory address clear mode.
- (10) Apply 5 V to VDD and VPP pins.
- (11) Turn the power off.

The timing for steps (2) to (9) is shown below.

NEC μ PD75P068

4. SCREENING ONE-TIME PROM PRODUCTS

NEC cannot execute a complete test of one-time PROM products (μ PD75P068CU and μ PD75P068GB-3B4) due to their structure before shipment. It is recommended that you screen (verify) PROM products after writing necessary data into them and storing them at 125 °C for 24 hours.

NEC offers a charged service called QTOP microcomputer service. This service includes writing to one-time PROM, marking, screening, and verification.

Ask your sales representative for details.

5. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS $(T_a = 25 \, {}^{\circ}C)$

Parameter	Symbol		Conditions		Rated value	Unit
Supply voltage	V _{DD}				-0.3 to +7.0	V
Supply voltage	V _{PP}				-0.3 to +13.5	V
Input voltage	Vıı	Ports other than I	ports 4 and 5		-0.3 to V _{DD} + 0.3	V
	Vı2	Ports 4 and 5	N-ch open dr	ain	-0.3 to +11	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V	
High-level output current	Іон	1 pin			-10	mA
		All pins	All pins			mA
Low-level output current	loLNote	1 pin of ports 0, 3, 4, and 5		Peak value	30	mA
				rms	15	mA
		1 pin of ports 2 and 6		Peak value	20	mA
				rms	5	mA
		Total of all pins of ports 0, 3, 4, and 5		Peak value	160	mA
				rms	120	mA
		Total of all pins of	of ports 2, and	Peak value	30	mA
		6	6		20	mA
Operating temperature	Topt				-40 to +85	°C
Storage tempera- ture	T _{stg}				-65 to +150	°C

Note Calculate rms with [rms] = [peak value] $\times \sqrt{\text{duty}}$.

Caution Absolute maximum ratings are rated values beyond which some physical damages may be caused to the product; if any of the parameters in the table above exceeds its rated value even for a moment, the quality of the product may deteriorate. Be sure to use the product within the rated values.

CAPACITANCE ($T_a = 25 \, {}^{\circ}C$, $V_{DD} = 0 \, V$)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input capacitance	Cı	f = 1 MHz			15	pF
Output capacitance	Со	0 V for pins other than pins to be			15	pF
I/O capacitance	Сю	measured			15	pF

CHARACTERISTICS OF THE MAIN SYSTEM CLOCK OSCILLATOR (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

Resonator	Recommended constant	Parameter	Conditions	Min.	Тур.	Max.	Unit
Ceramic resonator	V33 /(1 /(Z	Oscillator frequency (fx) Note 1		1.0		5.0Note 3	MHz
		Oscillation settling time Note 2				4	ms
Crystal	C1 C2 C2 C2 C2 C3 C3 C3 C3 C4	Oscillator frequency (fx) Note 1		1.0	4.19	5.0Note 3	MHz
		Oscillation	V _{DD} = 4.5 to 6.0 V			10	ms
	177	settling time Note 2				30	ms
External clock	X1 X2	X1 input frequency (fx) Note 1		1.0		5.0Note 3	MHz
	μPD74HCU04	X1 input high/low level width (txH, txL)		100		500	ns

- **Notes 1.** The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item of AC characteristics for the instruction execution time.
 - 2. The oscillation settling time means the time required for the oscillation to settle after VDD is reaches the minimum voltage in the oscillation voltage range.
 - 3. When 4.19 MHz < fx \leq 5.0 MHz, do not select PCC = 0011 as the instruction execution time. When PCC = 0011, one machine cycle falls short of 0.95 μ s, the minimum value for the standard.

Caution When the main system clock oscillator is used, conform to the following guidelines when wiring at the portions surrounded by dotted lines in the figures above to eliminate the influence of the wiring capacity.

- The wiring must be as short as possible.
- Other signal lines must not run in these areas.
- . Any line carrying a high fluctuating current must be kept away as far as possible.
- The grounding point of the capacitor of the oscillator must have the same potential as that of VDD. It must not be grounded to ground patterns carrying a large current.
- No signal must be taken from the oscillator.

CHARACTERISTICS OF THE SUBSYSTEM CLOCK OSCILLATOR (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

Resonator	Recommended constant	Parameter	Conditions	Min.	Тур.	Max.	Unit
Crystal	Vss XT1 XT2	Oscillator frequency (f _{XT}) Note 1		32	32.768	35	kHz
	C3 = C4	Oscillation settling time	V _{DD} = 4.5 to 6.0 V		1.0	2	s
		Note 2				10	s
External clock	XT1 XT2	XT1 input frequency (f _{XT}) Note 1		32		100	kHz
		XT1 input high/low level width (txтн, txть)		5		15	μs

- **Notes 1.** The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item of AC characteristics for the instruction execution time.
 - 2. The oscillation settling time means the time required for the oscillation to settle after VDD reaches the minimum voltage in the oscillation voltage range.

Caution When the subsystem clock oscillator is used, conform to the following guidelines when wiring at the portions surrounded by dotted lines in the figures above to eliminate the influence of the wiring capacity.

- The wiring must be as short as possible.
- Other signal lines must not run in these areas.
- Any line carrying a high fluctuating current must be kept away as far as possible.
- The grounding point of the capacitor of the oscillator must have the same potential as that of Vss. It must not be grounded to ground patterns carrying a large current.
- No signal must be taken from the oscillator.

When the subsystem clock is used, pay special attention to its wiring; the subsystem clock oscillator has low amplification to minimize current consumption and is more likely to malfunction due to noise than the main system clock oscillator.

RECOMMENDED CAPACITORS IN THE OSCILLATION CIRCUIT

Main system clock: Ceramic resonator ($T_a = -20 \text{ to } +80^{\circ}\text{C}$)

NA 6 1	Part number	Frequency	Recommend	Recommended constant		Oscillation voltage range		
Manufacturer	Part number	(MHz)	C1 (pF)	C2 (pF)	Min. (V)	Max. (V)		
	KBR-1000F/Y	1.00	150	150				
	KBR-2.0MS	2.00	47	47				
	PBRC 2.00A	2.00	47	47				
	KBR-3.0MS	3.00						
	KBR-3.58MSA		33	33		6.0		
	PBRC 3.58A	0.50			2.7			
	KBR-3.58MKS	3.58	Contained 33	Contained				
Kyocera	KBR-3.58MWS							
	KBR-4.00MSA			33	2.7			
	PBRC 4.00A	4.00		33	_			
	KBR-4.00MKS		Contained	Contained				
	KBR-4.00MWS							
	KBR-5.0MSA		00					
	PBRC 5.00A	5.00	33	33				
	KBR-5.0MKS	5.00		0				
	KBR-5.0MWS		Contained	Contained				
	CRHF2.50	2.50	-	-				
Toko	CRHF4.19	4.40	30	30		2.2		
ТОКО	CRHT4.19	4.19	Contained	Contained	2.7	6.0		
	CRHF5.00	5.00	30	30				

Main system clock: Crystal ($T_a = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturar	Manufacturer Part number		Part number Frequency		Recommend	Recommended constant		Oscillation voltage range		
Manufacturer Fart number		(MHz)	C1 (pF)	C2 (pF)	Min. (V)	Max. (V)				
		2.00								
Kinseki	HC-49/U	4.19	22	22	3.5	6.0				
		6.00								

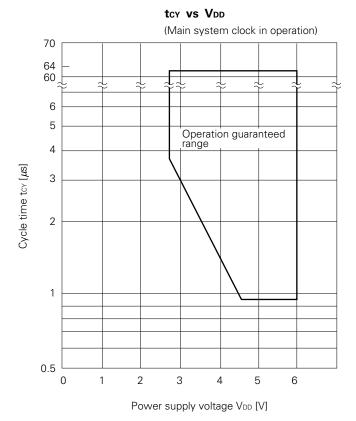
Subsystem clock: Crystal ($T_a = -15 \text{ to } +60^{\circ}\text{C}$)

Manufastona	Doub accept an	Frequency (kHz)	Reco	mmended con	Oscillation voltage range		
Manufacturer Part r	Part number		C3 (pF)	C4 (pF)	R (kΩ)	Min. (V)	Max. (V)
Kyocera	KF-38G	32.768	15	27	220	2.7	6.0

DC CHARACTERISTICS ($T_a = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$)

Parameter	Symbol		Conditions	6	Min.	Тур.	Max.	Unit
High-level	V _{IH1}	Ports 2, 3, and 1	1		0.7V _{DD}		V _{DD}	V
input voltage	V _{IH2}	Ports 0, 1, and 6	, and $\overline{\sf RESET}$		0.8V _{DD}		V _{DD}	V
	VIH3	Ports 4 and 5			0.7V _{DD}		10	V
	V _{IH4}	X1, X2, XT1, and	d XT2		V _{DD} - 0.5		V _{DD}	V
Low-level input	V _{IL1}	Ports 2 to 5 and	11		0		0.3V _{DD}	V
voltage	V _{IL2}	Ports 0, 1, and 6	, and RESET		0		0.2V _{DD}	V
	VIL3	X1, X2, XT1, and	1, X2, XT1, and XT2		0		0.4	V
High-level	Vон	$V_{DD} = 4.5 \text{ to } 6.0 ^{\circ}$	V, Іон = −1 m <i>A</i>	\	V _{DD} - 1.0			V
output voltage		Іон = -100 μΑ			V _{DD} - 0.5			V
Low-level output	Vol	Ports 4 and 5	V _{DD} = 4.5 to	6.0 V, IoL = 15 mA		0.7	2.0	V
voltage		Port 3	V _{DD} = 4.5 to	6.0 V, IoL = 15 mA		8.0	2.0	V
		$V_{DD} = 4.5 \text{ to } 6.0$	V _{DD} = 4.5 to 6.0 V, I _{OL} = 1.6 mA				0.4	V
		IoL = 400 μA					0.5	V
		SB0 and SB1 Pull-up resistor: 1 kΩ or more					0.2V _{DD}	V
High-level input	Ішн1	$V_I = V_{DD}$	Other than X1, X2, XT1, and XT2				3	μΑ
leakage current	I _{LIH2}		X1, X2, XT1,	X1, X2, XT1, and XT2			20	μΑ
	Інз	Vı = 10 V	Ports 4 and 5				20	μΑ
Low-level input	ILIL1	V1 = 0 V	Other than X1, X2, XT1, and XT2				-3	μΑ
leakage current	ILIL2		X1, X2, XT1,	, and XT2			-20	μΑ
High-level output	Ісон1	Vo = VDD					3	μΑ
leakage current	ILOH2	Vo = 10 V	Ports 4 and	5			20	μΑ
Low-level out-put leakage current	ILOL	Vo = 0 V					-3	μΑ
Built-in pull-up	Rυ	P01, P02, P03,	V _{DD} = 5.0 V ±	10 %	15	40	80	kΩ
resistor		and ports 1 to 3, and 6 $V_1 = 0 V$	V _{DD} = 3.0 V ±	-10 %	30		300	kΩ
Power supply	I _{DD1}	4.19 MHz ^{Note 2}	V _{DD} = 5.0 V ±	10 %Note 3		3.3	10	mA
current ^{Note 1}		crystal resonance	V _{DD} = 3.0 V ±	10 %Note 4		0.45	1.4	mA
	I _{DD2}	C1 = C2 = 22 pF	HALT mode	V _{DD} = 5.0 V ±10 %		600	1800	μΑ
				V _{DD} = 3.0 V ±10 %		220	700	μΑ
	IDD3	32.768 kHz ^{Note 5}	V _{DD} = 3.0 V ±	±10 %		35	120	μΑ
	I _{DD4}	crystal resonance	HALT mode	V _{DD} = 3.0 V ±10 %		5	15	μΑ
	I _{DD5}	XT1 = 0 V	V _{DD} = 5.0 V ±	10 %		0.5	20	μΑ
			V _{DD} =			0.1	10	μΑ
			3.0 V ±10 %	T _a = 25 °C		0.1	5	μΑ

- Notes 1. This current excludes the current which flows through the built-in pull-up resistors.
 - 2. This value applies also when the subsystem clock oscillates.
 - 3. Value when the processor clock control register (PCC) is set to 0011 and the μ PD75036 is operated in the high-speed mode
 - 4. Value when the PCC is set to 0000 and the μ PD75036 is operated in the low-speed mode
 - **5**. This value applies when the system clock control register (SCC) is set to 1001 to stop the main system clock pulse and to start the subsystem clock pulse.


AC CHARACTERISTICS ($T_a = -40 \text{ to } +85 \text{ °C}$, $V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$)

Parameter	Symbol	Condi	Conditions		Тур.	Max.	Unit
CPU clock cycle time	tcy	Operated by main system clock	V _{DD} = 4.5 to 6.0 V	0.95		64	μs
(minimum instruction execution time = 1		pulse		3.8		64	μs
machine cycle)Note 1		Operated by subsystem clock pulse		114	122	125	μs
TI0 input frequency	f⊤ı	V _{DD} = 4.5 to 6.0 V		0		1	MHz
				0		275	kHz
TI0 input high/low	tтıн,	V _{DD} = 4.5 to 6.0 V		0.48			μs
level width	t TIL			1.8			μs
Interrupt input high/	tinth,	INT0		Note 2			μs
low level width	tintl	INT1, INT2, and IN	Γ4	10			μs
		KR0 to KR3		10			μs
RESET low level width	trsl		10			μs	

Notes 1. The cycle time of the CPU clock (Φ) depends on the connected resonator frequency, the system clock control register (SCC), and the processor clock control register (PCC).

The figure on the right side shows the cycle time tcy characteristics for the supply voltage V_{DD} during main system clock operation.

2. This value becomes 2tcy or 128/fx according to the setting of the interrupt mode register (IM0).

SERIAL TRANSFER OPERATION

Two-wire and three-wire serial I/O modes (SCK ... Internal clock output):

Parameter	Symbol	Cond	Conditions			Max.	Unit
SCK cycle time	tkcy1	V _{DD} = 4.5 to 6.0 V	V _{DD} = 4.5 to 6.0 V				ns
				3800			ns
SCK high/low level	t _{KL1}	V _{DD} = 4.5 to 6.0 V	tксү1/2 - 50			ns	
width	t _{KH1}			tксү1/2 – 150			ns
SI setup time (referred to SCK1)	tsık1		150			ns	
SI hold time (referred to SCK↑)	t _{KSI1}			400			ns
Delay time from	tkso1	$R_L = 1 k\Omega$,	V _{DD} = 4.5 to 6.0 V	0		250	ns
SCK↓ to SO output		C _L = 100 pF ^{Note}		0		1000	ns

Two-wire and three-wire serial I/O modes (SCK ... External clock input):

Parameter	Symbol	Cond	Conditions			Max.	Unit
SCK cycle time	tkcy2	V _{DD} = 4.5 to 6.0 V	V _{DD} = 4.5 to 6.0 V				ns
				3200			ns
SCK high/low level	t _{KL2}	V _{DD} = 4.5 to 6.0 V	400			ns	
width	t _{KH2}			1600			ns
SI setup time (referred to SCK1)	tsık2			100			ns
SI hold time (referred to SCK1)	tksi2		400			ns	
Delay time from	tkso2	$R_L = 1 \text{ k}\Omega,$	V _{DD} = 4.5 to 6.0 V	0		300	ns
SCK↓ to SO output		C _L = 100 pFNote		0		1000	ns

 $\textbf{Note} \ \ \mathsf{RL} \ \mathsf{and} \ \mathsf{CL} \ \mathsf{are} \ \mathsf{the} \ \mathsf{resistance} \ \mathsf{and} \ \mathsf{capacitance} \ \mathsf{of} \ \mathsf{the} \ \mathsf{SO} \ \mathsf{output} \ \mathsf{line} \ \mathsf{load} \ \mathsf{respectively}.$

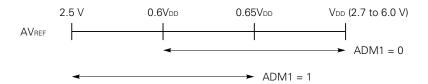
SBI mode (SCK ... Internal clock output (master)):

Parameter	Symbol	Con	ditions	Min.	Тур.	Max.	Unit
SCK cycle time	tксүз	V _{DD} = 4.5 to 6.0 V		1600			ns
				3800			ns
SCK high/low level	tкцз	V _{DD} = 4.5 to 6.0 V		tксүз/2 - 50			ns
width	tкнз			tксүз/2 - 150			ns
SB0/SB1 setup time (referred to SCK↑)	tsıкз			150			ns
SB0/SB1 hold time (referred to SCK↑)	t ksı3			tксүз/2			ns
Delay time from SCK↓	t kso3	$R_L = 1 k\Omega$,	V _{DD} = 4.5 to 6.0 V	0		250	ns
to SB0/SB1 output		C _L = 100 pF ^{Note}		0		1000	ns
From SCK↑ to SB0/SB1↓	tкsв			tксүз			ns
From SB0/SB1↓ to SCK	t sbk			tксүз			ns
SB0/SB1 low level width	tsbl			tксүз			ns
SB0/SB1 high level width	tsвн			tксүз			ns

SBI mode (SCK ... External clock input (slave)):

Parameter	Symbol	Cond	ditions	Min.	Тур.	Max.	Unit
SCK cycle time	t KCY4	V _{DD} = 4.5 to 6.0 V		800			ns
				3200			ns
SCK high/low level	tĸL4	V _{DD} = 4.5 to 6.0 V		400			ns
width	t кн4			1600			ns
SB0/SB1 setup time (referred to SCK↑)	tsiK4			100			ns
SB0/SB1 hold time (referred to SCK↑)	t KSI4			t ксү4/ 2			ns
Delay time from SCK↓	tkso4	$R_L = 1 k\Omega$,	V _{DD} = 4.5 to 6.0 V	0		300	ns
to SB0/SB1 output		C _L = 100 pF ^{Note}		0		1000	ns
From SCK↑ to SB0/SB1↓	tкsв			tkcy4			ns
From SB0/SB1 \downarrow to SCK \downarrow	tsвк			tkcy4			ns
SB0/SB1 low level width	t sBL			tkcy4			ns
SB0/SB1 high level width	tsвн			tkcy4			ns

 $\textbf{Note} \ \ \mathsf{RL} \ \mathsf{and} \ \mathsf{CL} \ \mathsf{are} \ \mathsf{the} \ \mathsf{resistance} \ \mathsf{and} \ \mathsf{capacitance} \ \mathsf{of} \ \mathsf{the} \ \mathsf{SB0/SB1} \ \mathsf{output} \ \mathsf{line} \ \mathsf{load} \ \mathsf{respectively}.$


A/D CONVERTER ($T_a = -40 \text{ to } +85 \, ^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 6.0 \, \text{V}$, $AV_{SS} = V_{SS} = 0 \, \text{V}$)

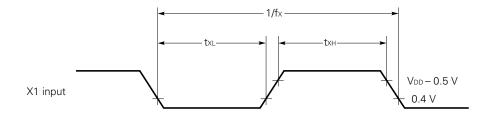
Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Resolution				8	8	8	bit
Absolute accuracyNote 1		$2.5 \text{ V} \le \text{AV}_{\text{REF}} \le \text{V}_{\text{DD}}$ Note 2	-10 ≤ Ta ≤ +85°C			±1.5	LSB
			-40 ≤ Ta < -10°C			±2.0	LSB
Conversion timeNote 3	tconv					168/fx	μs
Sampling time ^{Note 4}	t samp					44/fx	μs
Reference input voltage	AVREF			2.5		V _{DD}	V
Analog input voltage	VIAN			AVss		AVREF	٧
Analog input impedance	Ran				1000		MΩ
AVREF current	Alref				0.7	2.0	mA

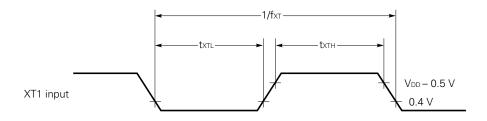
Notes 1. Absolute accuracy excluding quantization error (±1/2 LSB)

 $\textbf{2.} \quad \textbf{2.5} \ V \leq AV_{REF} \leq V_{DD}$

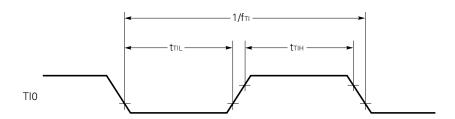
ADM1 is set to 0 or 1 depending on the A/D converter reference voltage (AVREF) as follows:

When $0.6V_{DD} \le AV_{REF} \le 0.65V_{DD}$, ADM1 can be set to either 0 or 1.

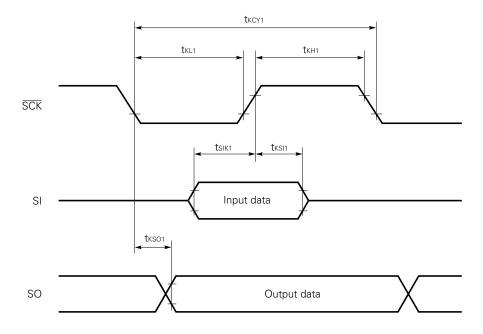

- 3. Time from the execution of a conversion start instruction till the end of conversion (EOC = 1) (40.1 μ s: fx = 4.19 MHz)
- **4.** Time from the execution of a conversion start instruction till the end of sampling (10.5 μ s: fx = 4.19 MHz)

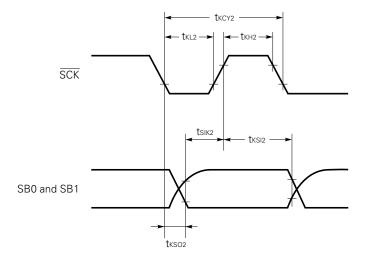


AC Timing Measurement Points (Excluding X1 and XT1 Inputs)



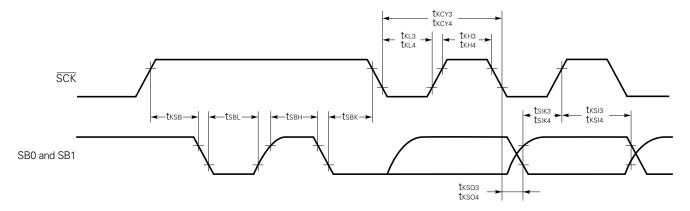
Clock Timing

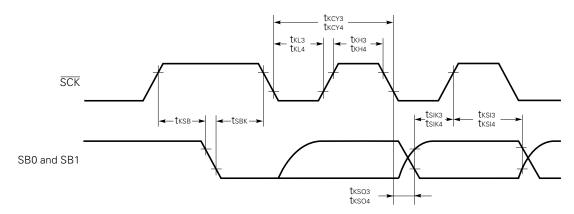

TI0 Timing



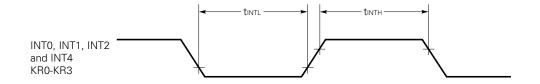
Serial Transfer Timing

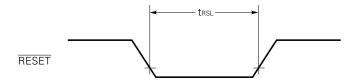
Three-wire serial I/O mode:


Two-wire serial I/O mode:



Serial Transfer Timing

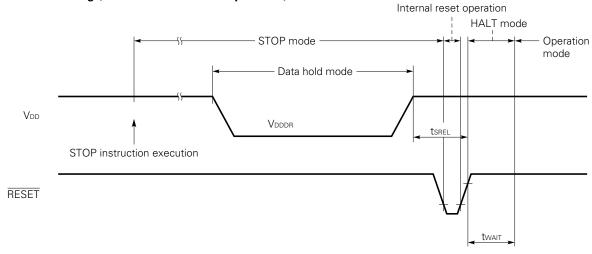

Bus release signal transfer:


Command signal transfer:

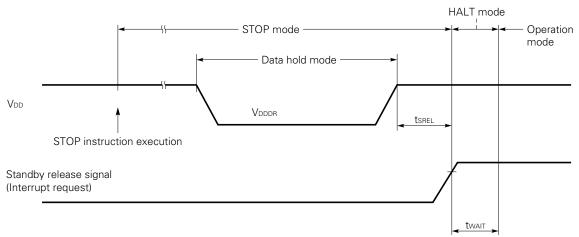
Interrupt Input Timing

RESET Input Timing

DATA HOLD CHARACTERISTICS BY LOW SUPPLY VOLTAGE IN DATA MEMORY STOP MODE

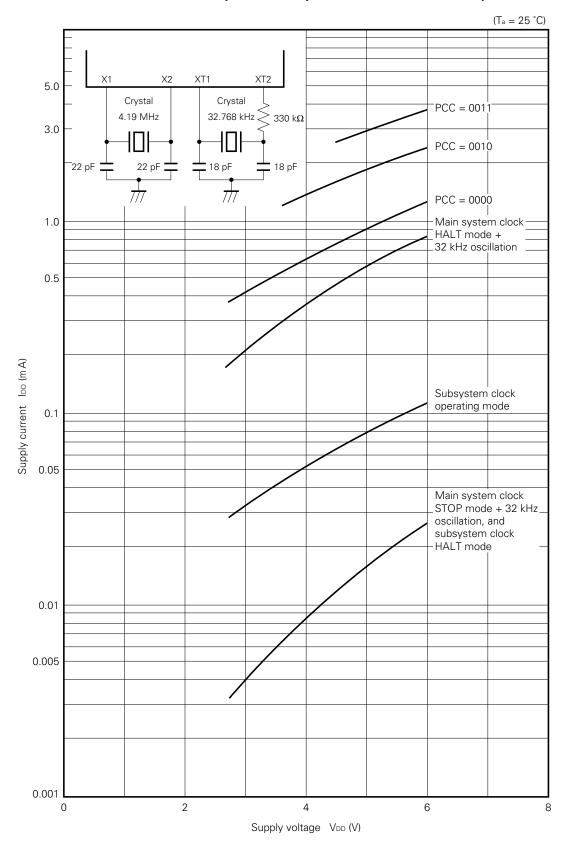

 $(T_a = -40 \text{ to } +85 \text{ }^{\circ}\text{C})$

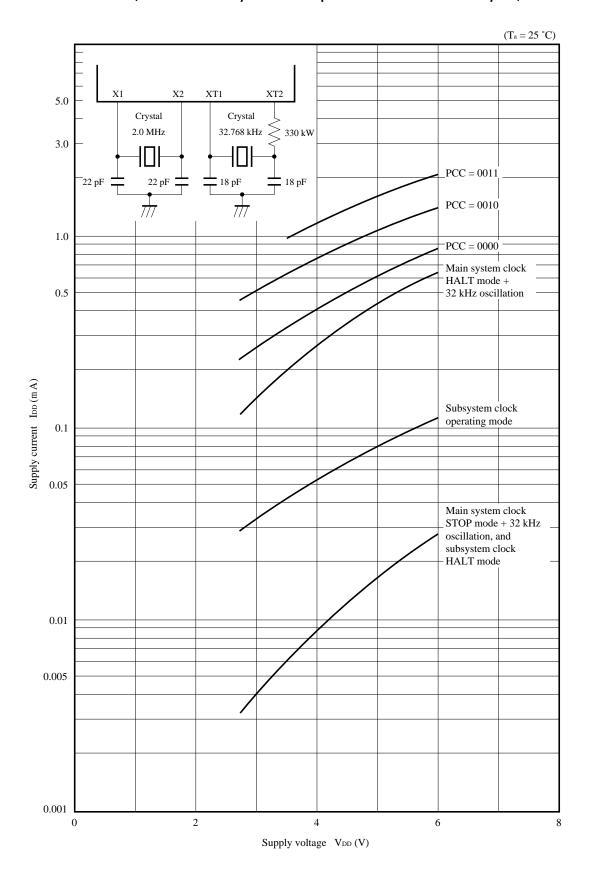
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Data hold supply voltage	VDDDR		2.0		6.0	V
Data hold supply current Note 1	Idddr	V _{DDDR} = 2.0 V		0.1	10	μΑ
Release signal setting time	t srel		0			μs
Oscillation settling time Note 2	twait	Release by RESET		217/fx		ms
		Release by interrupt request		Note 3		ms


- Notes 1. Excluding the current which flows through the built-in pull-up resistors
 - 2. CPU operation stop time for preventing unstable operation at the beginning of oscillation
 - 3. This value depends on the settings of the basic interval timer mode register (BTM) shown below.

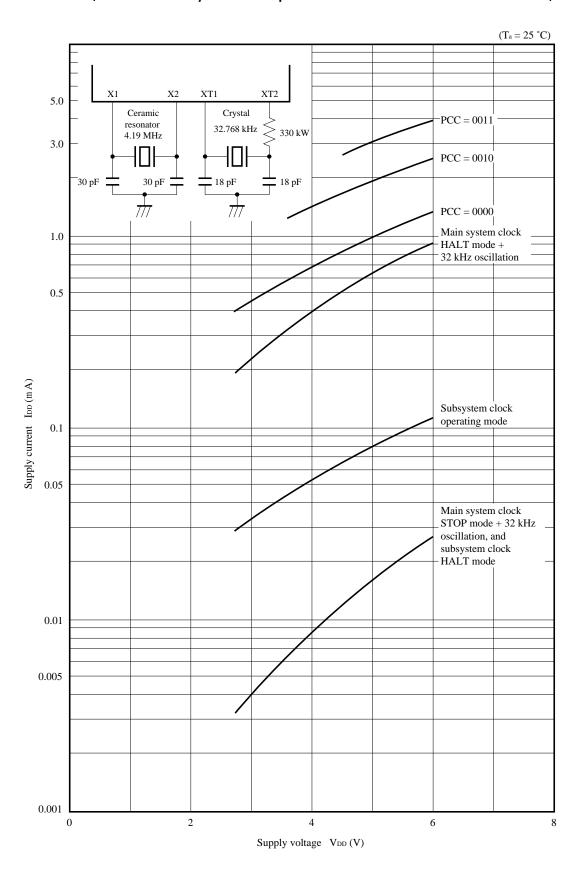
ВТМ3	BTM2	BTM1	ВТМ0	Wait time (Values at fx = 4.19 MHz in parentheses)
_	0	0	0	2 ²⁰ /fx (approx. 250 ms)
_	0	1	1	2 ¹⁷ /fx (approx. 31.3 ms)
_	1	0	1	2 ¹⁵ /fx (approx. 7.82 ms)
_	1	1	1	2 ¹³ /fx (approx. 1.95 ms)

Data Hold Timing (STOP Mode Release by RESET)

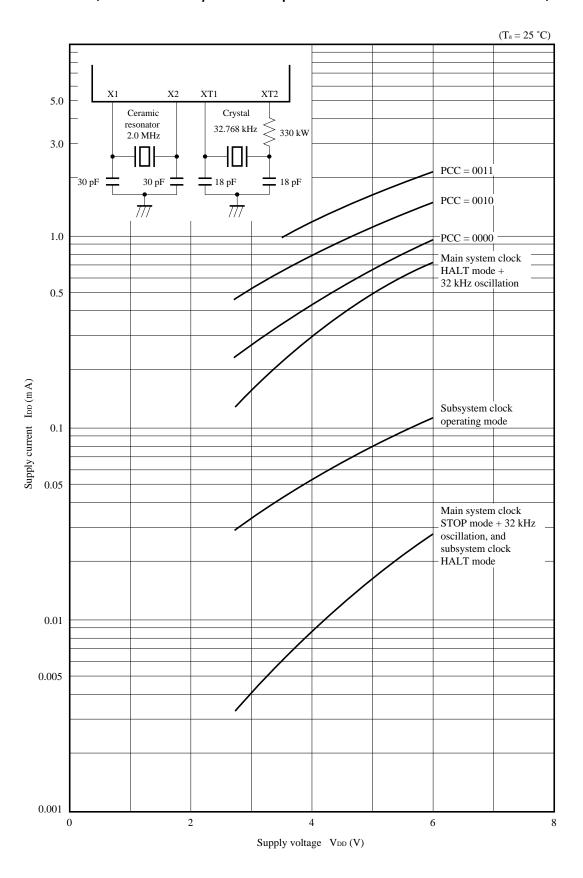

Data Hold Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)


6. CHARACTERISTIC CURVES (FOR REFERENCE)

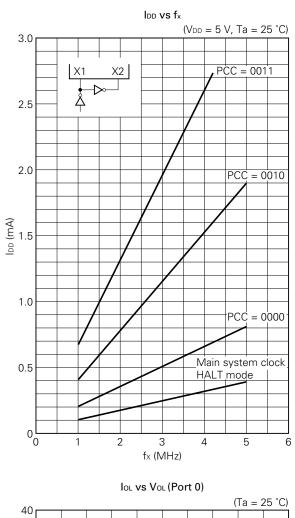
$\ensuremath{\mathsf{Idd}}$ vs $\ensuremath{\mathsf{Vdd}}$ (When the main system clock operates at 4.19 MHz with a crystal)

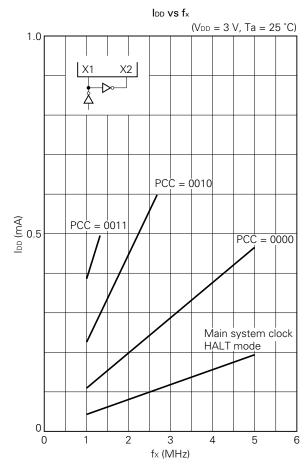


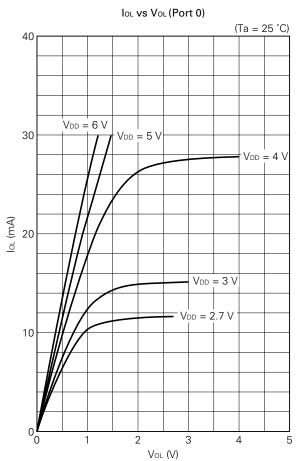
IDD vs VDD (When the main system clock operates at 2.0 MHz with a crystal)

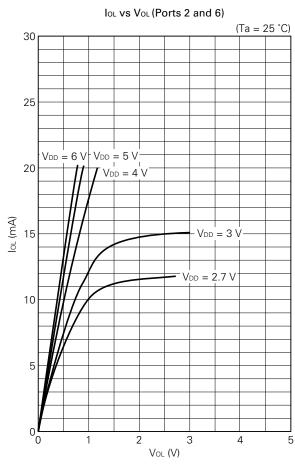


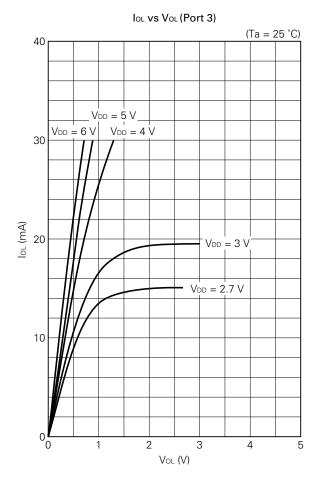
lob vs Vob (When the main system clock operates at 4.19 MHz with a ceramic resonator)

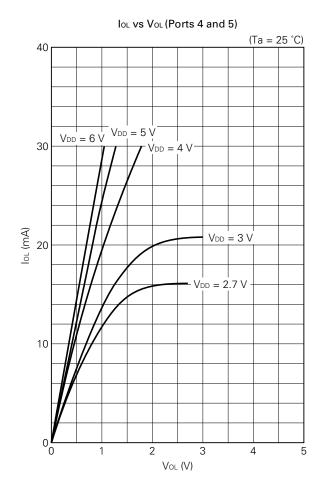


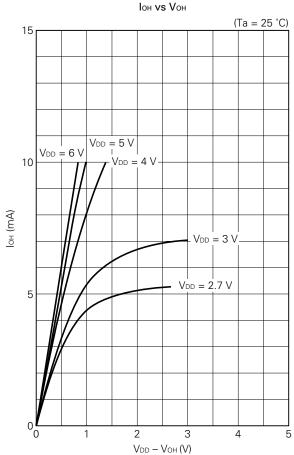


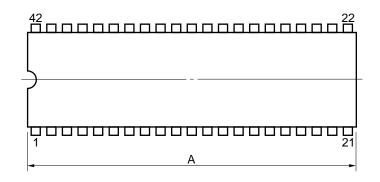

lob vs Vod (When the main system clock operates at 2.0 MHz with a ceramic resonator)

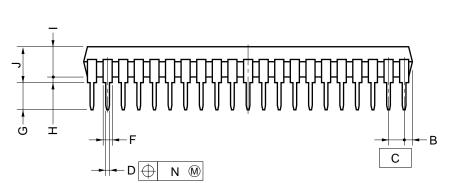


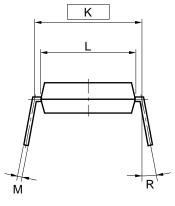








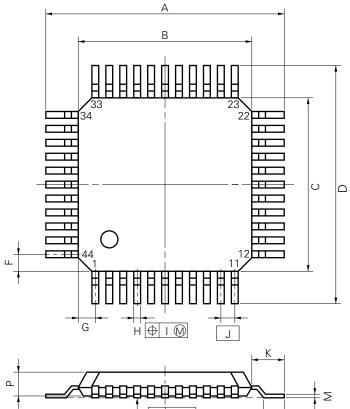




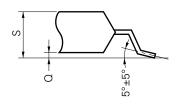
7. PACKAGE DRAWINGS

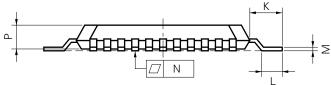
42PIN PLASTIC SHRINK DIP (600 mil)

NOTES


- Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	39.13 MAX.	1.541 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	15.24 (T.P.)	0.600 (T.P.)
L	13.2	0.520
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°


P42C-70-600A-1



44 PIN PLASTIC QFP (□10)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

P44GB-80-3B4-2

ITEM	MILLIMETERS	INCHES	
А	13.6±0.4	$0.535^{+0.017}_{-0.016}$	
В	10.0±0.2	.0±0.2 0.394 ^{+0.008} _{-0.009}	
С	10.0±0.2	0.394 ^{+0.008} _{-0.009}	
D	13.6±0.4	$0.535^{+0.017}_{-0.016}$	
F	1.0	0.039	
G	1.0	0.039	
Н	0.35±0.10	0.014+0.004	
I	0.15	0.006	
J	0.8 (T.P.)	0.031 (T.P.)	
K	1.8±0.2	0.071 ^{+0.008} _{-0.009}	
L	0.8±0.2	0.031+0.009	
М	$0.15^{+0.10}_{-0.05}$	0.006+0.004	
N	0.12	0.005	
Р	2.7	0.106	
Q	0.1±0.1	0.004±0.004	
S	3.0 MAX.	0.119 MAX.	

8. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD75P068.

For details of the recommended soldering conditions, refer to our document "SMD Surface Mount Technology Manual" (IEI-1207).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 8-1 Soldering Conditions for Surface-Mount Devices

 μ PD75P068GB-3B4: 44-pin plastic QFP (10 imes 10 mm)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: 235 °C Reflow time: 30 seconds or less (at 210 °C or more) Maximum allowable number of reflow processes: 2 <cautions> (1) Do not start reflow-soldering the device if its temperature is higher than the room temperature because of a previous reflow soldering. (2) Do not use water for flux cleaning before a second reflow soldering.</cautions>	IR35-00-2
VPS	Peak package's surface temperature: 215 °C Reflow time: 40 seconds or less (at 200 °C or more) Maximum allowable number of reflow processes: 2 <cautions> (1) Do not start reflow-soldering the device if its temperature is higher than the room temperature because of a previous reflow soldering. (2) Do not use water for flux cleaning before a second reflow soldering.</cautions>	VP15-00-2
Wave soldering	Solder temperature: 260°C or less Flow time: 10 seconds or less Number of flow processes: 1 Preheating temperature: 120 max. (measured on the package surface)	WS60-00-1
Partial heating method	Terminal temperature: 300 °C or less Flow time: 3 seconds or less (for each side of device)	-

Caution Do not apply more than a single process at once, except for "Partial heating method."

Table 8-2 Soldering Conditions for Through Hole Mount Devices

 μ PD75P068CU: 42-pin plastic shrink DIP (600 mil)

Soldering process	Soldering conditions
Wave soldering (only for leads)	Solder temperature: 260 °C or less Flow time: 10 seconds or less
Partial heating method	Terminal temperature: 260 °C or less Flow time: 10 seconds or less

Caution In wave soldering, apply solder only to the lead section. Care must be taken that jet solder does not come in contact with the main body of the package.

Notice -

Other versions of the products are available. For these versions, the recommended reflow soldering conditions have been mitigated as follows:

Higher peak temperature (235 $^{\circ}\text{C}\text{)},$ two-stage, and longer exposure limit.

Contact an NEC representative for details.

APPENDIX A DEVELOPMENT TOOLS

The following development tools are provided for developing systems including the μ PD75P068:

	IE-75000-R ^{Note 1} IE-75001-R		In-circuit emulator for the 75X series
	IE-75000-R-EMNote 2		Emulation board for the IE-75000-R and IE-75001-R
Hardware	EP-75068CU-R		Emulation probe for the μPD75P068CU
	EP-75068GB-R		Emulation probe for the μ PD75P068GB. A 44-pin conversion socket, the EV-9200G-64, is
		EV-9200G-44	attached to the probe.
	PG-1500		PROM programmer
	PA-75P008CU		PROM programmer adapter for the μ PD75P068CU/GB. Connected to the PG-1500.
Software	IE control program		Host machine
	PG-1500 controller		PC-9800 series (MS-DOS TM Ver. 3.30 to Ver. 5.00A ^{Note 3}) PC/AT TM series (PC DOS TM Ver. 3.10)
	RA75X relocatable assembler		. 6,7.1 65.136 (1.6 200 15.1.6.10)

- Notes 1. Maintenance service only
 - 2. Not contained in the IE-75001-R
 - **3**. MS-DOS versions 5.00 and 5.00A are provided with a task swap function. This function, however, cannot be used in these software.

 $\textbf{Remark} \quad \text{Refer to } \textit{75X Series Selection Guide} \, (\text{IF-1027}) \, \text{for development tools manufactured by third parties}.$

APPENDIX B RELATED DOCUMENTS

Documents related to the device

Document Name	Document No.
User's Manual	IEU-1366
Application Note (Preliminary)	IEA-1296
75X Series Selection Guide	IF-1027

Documents related to development tools

Document Name		Document No.	
	IE-75000-R/IE-75001-R User's Manual		EEU-1455
	IE-75000-R-EM User's Manual		EEU-1294
Hardware	EP-75068CU-R User's Manual		EEU-1317
Hard	EP-75068GB-R User's Manual		EEU-1428
	PG-1500 User's Manual		EEU-1335
n e	RA75X Assembler Package User's Manual	Operation	EEU-1346
Softwa		Language	EEU-1363
Sc	PG-1500 Controller User's Manual		EEU-1291

Other documents

Document Name	Document No.
Package Manual	IEI-1213
SMD Surface Mount Technology Manual	IEI-1207
Quality Grades on NEC Semiconductor Devices	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	IEI-1203
Electrostatic Discharge (ESD) Test	IEI-1201
Guide to Quality Assurance for Semiconductor Devices	MEI-1202

Caution The above documents may be revised without notice. Use the latest versions when you design an application system.

[MEMO]

Cautions on CMOS Devices

① Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged.

Strong static electricity may cause dielectric breakdown in gates. When transporting or storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins. Also handle boards on which MOS devices are mounted in the same way.

2 CMOS-specific handling of unused input pins

Caution Hold CMOS devices at a fixed input level.

Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediate-level input may be caused by noise. This allows current to flow in the CMOS device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused pins may function as output pins at unexpected times, each unused pin should be separately connected to the VDD or GND pin through a resistor. If handling of unused pins is documented, follow the instructions in the document.

3 Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.

Since characteristics of a MOS device are determined by the amount of ions implanted in molecules, the initial status cannot be determined in the manufacture process. NEC has no responsibility for the output statuses of pins, input and output settings, and the contents of registers at power on. However, NEC assures operation after reset and items for mode setting if they are defined.

When you turn on a device having a reset function, be sure to reset the device first.

NEC μ PD75P068

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92. 6

MS-DOS is a trademark of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation.