4-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD75P218 is a one-time PROM version that can be written to only once or an EPROM version that allows program writing, erasing, and rewriting, of the $\mu \mathrm{PD} 75218$ Note.

Since the program can be written by the user, the μ PD75P218 is suitable for preproduction use during system development, or limited production.

Read this material together with the μ PD75218 materials.

Note Under development

FEATURES

- μ PD75218 compatible
- On-chip 16K-byte mode/32K-byte mode switching function
- Operates at the same power supply voltage range (2.7 to 6.0 V) as the mask ROM version μ PD75218.
- 32640×8 bits of PROM
- 1024×4 bits of RAM
- No pull-down resistor for Port 6
- High breakdown voltage display output
- S0 to S8, T0 to T9: On-chip pull-down resistor
- S9, T10 to T15 : Open drain
- No power-on reset circuit

Caution No mask-option pull-down resistor is provided.

ORDERING INFORMATION

Part Number	Package	Quality Grade
μ PD75P218CW	64-pin plastic shrink DIP $(750 \mathrm{mil})$	Standard
μ PD75P218GF-3BR	64-pin plastic QFP $(14 \times 20 \mathrm{~mm})$	Standard
μ PD75P218KB	64-pin ceramic LCC with window $(14 \times 20 \mathrm{~mm})$	Standard
Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by		
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.		
The word "PROM" in this document refers to the common parts of the one-time PROM products and		
EPROM products.		

PIN CONFIGURATION (Top View)

1. PIN FUNCTIONS

1.1 PORT PINS

Pin name	Input/ output	Shared pin		tion	$\begin{aligned} & \text { 8-bit } \\ & \text { I/O } \end{aligned}$	When reset	
P00	Input	INT4	4-bit input port (PORTO).		\times	Input	
P01	I/O	$\overline{\text { SCK }}$					
P02	I/O	SO					
P03	Input	SI					
P10	Input	INTO/V ${ }_{\text {PP }}$	4-bit input port (PORT1).	With noise elimination function		Input	
P11		INT1					
P12		INT2					
P13		TIO					
P20	1/0	-	4-bit I/O port (PORT2).		\times	Input	
P21		-					
P22		-					
P23		BUZ					
P30-P33	I/O	MD0 - MD3	Programmable 4-bit I/O port (PORT3). I/O can be specified bit by bit.			Input	
P40-P43	I/O	-	4-bit I/O port (PORT4). Can directly drive LEDs.	Data input/output pins for the PROM write and verify (Four low-order bits).	\bigcirc	Input	
P50-P53	1/0	-	4-bit I/O port (PORT5). Can directly drive LEDs.	Data input/output pins for the PROM write and verify (Four high-order bits).		Input	
P60-P63	I/O	-	Programmable 4-bit I/O port (PORT6). I/O can be specified bit by bit. Suitable for key input.		\times	Input	
PH0	Output	T13/S12	4-bit P-ch open drain high breakdown voltage large current output port (PORTH). Can directly drive LEDs.		\times	High impedance	
PH1		T12/S13					
PH2		T11/S14					
PH3		T10/S15					

1.2 NON-PORT PINS

Pin name	Input/ output	Shared pin	Function		When reset
T0 - T9		-	Note 1	High breakdown voltage large current output pin for digit output	Low level
$\begin{gathered} \hline \mathrm{T} 10 / \mathrm{S} 15- \\ \mathrm{T} 13 / \mathrm{S} 12 \end{gathered}$	Output	PH3 - PH0	Note 2	High breakdown voltage large current output pin for digit/segment output The remainder of the pins can be used as PORTH.	High impedance
$\begin{aligned} & \mathrm{T} 14 / \mathrm{S} 11, \\ & \mathrm{~T} 15 / \mathrm{S} 10 \end{aligned}$		-		High breakdown voltage large current output pin for digit/segment output Static output is also available.	
S9				High breakdown voltage output pin for segment output Static output is also available.	
S0-S8			Note 1	High breakdown voltage output pin for segment output	Low level
PPO	Output	-	Output for receiving pulse signal for timer/pulse generator		High impedance
TIO	Input	P13	Input for receiving external event pulse signal for timer/ event counter		
$\overline{\text { SCK }}$	I/O	P01	Serial clock I/O		Input
SO	I/O	P02	Serial data output or serial data I/O		Input
SI	Input	P03	Serial data input or normal input		Input
INT4	Input	P00	Edge detection vectored interrupt input (either rising edge or falling edge detection)		
INT0	Input	P10/VPP	Edge detection vectored interrupt input with noise elimination (detection edge selectable)		
INT1		P11			
INT2	Input	P12	Edge detection testable input (rising edge detection)		
BUZ	I/O	P23	Fixed frequency output pin (for buzzer or system clock trimming)		Input
X1, X2		-	Crystal/ceramic resonator connection for main system clock generation. When external clock is used, it is applied to X 1 , and its reserve phase signal is applied to X 2 .		
XT1, XT2		-	Crystal connection for subsystem clock generation. When external clock is used, it is applied to XT1, and XT2 is open.		
$\overline{\text { RESET }}$	Input	-	System reset input (low level active)		
MD0 - MD3	I/O	P30-P33	Operation mode selection pins during the PROM write/verify cycles		
Vpp		P10/INT0	+12.5 V is applied as the programming voltage during the PROM write/verify cycles		
V Load		-	Pull-down resistor connection pin of FIP ${ }^{\circledR}$ controller/driver		
V ${ }_{\text {d }}$		-	Positive power supply. +6 V is applied as the programming voltage during the PROM write/verify cycles		
Vss		-	GND potential		
NC Note 3		-	No connection		

Note 1. On-chip pull-down resistor
2. Open drain output
3. When using a printed board with a μ PD75216A, 75217 , or 75218 , connect the NC pin to the Vpre.

1.3 PIN INPUT/OUTPUT CIRCUITS

The input/output circuit diagram for each μ PD75P218 pin is shown in Fig. 1-1 in a simplified manner. For the correspondence of the each pin and input/output type number, refer to Table 1-1.

Table 1-1 Pins and Input/Output Type Numbers

Pin name	I/O type	Pin name	I/O type
P00/INT4	(B)	P50-P53	E
P01/SCK	(F)	P60-P63	E
P02/SO	(${ }^{\text {a }}$	T0-T9	I-E
P03-SI	(B)	T10/S15/PH3-T13/S12/PH0	I-D
P10/INT0/VPP	(B)	T14/S11, T15/S10	I-D
P11/INT1, P12/INT2		S0-S8	I-E
P13-TI0		S9	I-D
P20-P22	E	PPO	D
P23/BUZ		$\overline{\text { RESET }}$	(B)
P30/MD0 - P33/MD3	E	VIoad	I-E
P40-P43	E		

Remark I/O type enclosed with a circle indicates Schmitt triggered input.

Fig. 1-1 Pin Input/Output Circuit

TYPE A	TYPE F
CMOS input buffer	I/O circuit consisting of push-pull output of Type D and Schmitt trigger of Type B
TYPE B	TYPE G
Schmitt trigger input with hysteresis TYPE D	I/O circuit that can switch the push-pull output or N -ch open drain output (off for P-ch)
Push-pull output which can be set to high-impedance output (off for both P-ch and N-ch)	TYPE I-D
TYPE E	TYPE I-E
I/O circuit consisting of push-pull output of Type D and input buffer of Type A	

1.4 PROCESSING OF UNUSED PINS

Table 1-2 Recommended Connection of Unused Pins

Pin name	Recommended connection
P00/INT4	Connect to Vss
P01/ $\overline{\text { SCK }}$	Connect to Vss or Vid
P02/SO	
P03/SI	
P10/INT0/VPp	Connect to Vss
P11/INT1, P12/INT2	
P13/T10	
P20-P22	Input state: Connect to Vss or Vod Output state: Open
P23/BUZ	
P30/MD0 - P33/MD3	
P40-P43	
P50-P53	
P60-P63	
PPO	Open
S0-S9	
T15/S10, T14/S11	
T0 - T9	
T10/S15/PH3-T13/S12/PH0	
XT1	Connect to Vss or Vdd
XT2	Open
VLoAD when no on-chip load resistor	Connect to Vss or Vdd

2. DIFFERENCES BETWEEN THE μ PD75P218 AND THE μ PD75P216A, 75217, 75218

Part number Item		μ PD75P216A	μ PD75217	μ PD75218 Note	μ PD75P218
ROM		One-time PROM $16 \mathrm{~K} \times 8$	Mask ROM $24 \mathrm{~K} \times 8$	Mask ROM $32 \mathrm{~K} \times 8$	PROM $32 \mathrm{~K} \times 8$
RAM		512×4	768×4	1024×4	
FIP controller/driver	segments	9-16 segments			
	digits	9-16 digits			
Pull-down resistors	P60-P63	Not available	Mask-option		Not available
	S0-S8, T0-T9	On-chip	Mask-option		On-chip
	SD9, T10-T15	Not available (open drain)	Mask-option		Not available (open drain)
Pin connection	P10	INTO/V ${ }_{\text {pp }}$ (common use)	INTO (common use)		INTO/V ${ }_{\text {PP }}$ (common use)
	P30-P33	$\begin{gathered} \text { MD0 - MD3 } \\ \text { (common use) } \end{gathered}$	No common use		$\begin{gathered} \text { MD0 - MD3 } \\ \text { (common use) } \end{gathered}$
	$V_{\text {PRE }}$	Not available (NC)	Available		Not available (NC)
Operating ambient temperature		-10 to $+70^{\circ} \mathrm{C}$	-40 to +85 ${ }^{\circ} \mathrm{C}$		-40 to $+70^{\circ} \mathrm{C}$
Power supply voltage		$5 \mathrm{~V} \pm 10$ \%	2.7-6.0 V		
Stack area		Bank 0	Bank 0-2	Bank 0-3	
16K-byte mode/32K-byte mode switching function		Not available			Available
Package		64-pin plastic shrink DIP	64-pin plastic shrink DIP 64-pin plastic OFP		64-pin plastic shrink DIP 64-pin plastic QFP 64-pin ceramic LCC with window

Note Under development

3. 16K-BYTE MODE/32K-BYTE MODE SWITCHING FUNCTION

16 K -byte mode or 32 K -byte mode can be selected by setting the stack bank selection register (SBS).
The μ PD75P218 can then be used to evaluate the μ PD75216A, μ PD75217, and μ PD75218.

3.1 DIFFERENCES BETWEEN 16K-BYTE MODE AND 32K-BYTE MODE

Table 3-1 16K-byte Mode and 32K-byte Mode Differences

Item	16K-byte Mode	32K-byte Mode
Stack operation at subroutine call instruction execution	2-byte stack	3-byte stack
Stack area	Bank 0	Bank 0 to bank 3
CALL instruction	3 machine cycles	4 machine cycles
TCALL instruction by GETI	2 machine cycles	3 machine cycles
CALLF instruction	Undefined operation	Normal operation
BRA instruction	0 fixed	Corresponds to branch instruction, call instruction
CALLA instruction	μ PD75217 (S-DIP, QFP) μ PD75218 (S-DIP, QFP)	
Program counter bit 14	μ PD75216A (S-DIP, QFP)	

3.2 16K-BYTE MODE AND 32K-BYTE MODE SWITCHING

16K-byte mode and 32 K -byte mode are switched by the stack bank selection register. The stack bank selection register format is shown in Fig. 3-1.

The stack bank selection register is set by 4-bit memory manipulation instruction. $\overline{\mathrm{RESET}}$ input sets bit 3 of the stack bank selection register to " 1 " and changes from 32K-byte mode to 16 K -byte mode. When 16 K -byte mode is used, manipulating the stack bank selection register is unnecessary. When 32 K -byte mode is used, the stack bank selection register must always be initialized to $00 \times \times \mathrm{B}$ Note ${ }^{1}$ at the beginning of the program.

Fig. 3-1 Stack Bank Selection Register Format

Caution When using 32K-byte mode, execute a subroutine call instruction and an interrupt enable instruction after the stack bank selection register is set after RESET input.

Notes 1. Set the desired value in $x \times$.
2. When the 16 K -byte mode is used after RESET input, the stack bank selection register does not have to be manipulated.

4. PROM (PROGRAM MEMORY) WRITE AND VERIFY

The PROM contained in the μ PD75P218 is one-time PROM or EPROM for writing, erasing, and rewriting. Table 4-1 shows the pin functions during the write and verify cycles. Note that it is not necessary to enter an address, because the address is updated by pulsing the X 1 clock pins.

Table 4-1 PROM Write and Verify Pin Functions

Pin Name	Function
VPP	Normally 2.7 to $6 \mathrm{~V} ; 12.5 \mathrm{~V}$ is applied during the write/verify cycles.
$\mathrm{X} 1, \mathrm{X} 2$	After a write/verify write, the X 1 and X 2 clock pins are pulsed. The inverted signal of the X 1 should be input to the X 2. Note that these pins are also pulsed during a read.
MD0 - MD3	Operation mode selection pins during the write/verify cycles
P40 - P43 (Four low-order bits) P50 - P53 (Four high-order bits)	8-bit data input/output pins during the write/verify cycles
VDD	Supply voltage

Cautions 1. The pins not used for write and verify should be processed as follows.

2. An opaque film should be placed over the UV erase window of the μ PD75P218KB except when erasing the EPROM contents.
3. The μ PD75P218CW/GF does not have a UV erase window, thus the PROM contents cannot be erased with ultraviolet ray.

4.1 PROM WRITE AND VERIFY OPERATION

When +6 V and +12.5 V are applied to the VDD and VPP pins, respectively, the PROM is placed in the write/ verify mode. The operation is selected by the MD0 to MD3 pins, as shown in Table 4-2.

Table 4-2 PROM Write and Verify Operation Mode

Operation Mode Specification						Operation Mode
$\mathrm{V}_{\text {PP }}$	VDD	MD0	MD1	MD2	MD3	
	+6 V	H	L	H	L	Clear program memory address to 0
		L	H	H	H	Write mode
		L	L	H	H	Verify mode
		H	\times	H	H	Program inhibit

[^0]
4.2 PROM WRITE/VERIFY PROCEDURE

PROMs can be written at high speed using the following procedure: (see the following figure)
(1) Connect unused pins to Vss. Set the X 1 pin low.
(2) Supply 5 volts to the Vdd and Vpp pins.
(3) Wait for $10 \mu \mathrm{~s}$.
(4) Select the zero clear program memory address mode.
(5) Supply 6 volts to the VDD and 12.5 volts to the VPP pins.
(6) Select the program inhibit mode.
(7) Write data in the 1 ms write mode.
(8) Select the program inhibit mode.
(9) Select the verify mode. If the data is correct, proceed to step (10). If not, repeat steps (7), (8) and (9).
(10) Perform one additional write (duration of $1 \mathrm{~ms} \times$ number of writes at (7) to (9)).
(11) Select the program inhibit mode.
(12) Apply four pulses to the X1 pin to increment the program memory address by one.
(13) Repeat steps (7) to (12) until the end address is reached.
(14) Select the zero clear program memory address mode.
(15) Return the VdD and Vpp pins back to +5 volts.
(16) Turn off the power.

Fig. 4-1 PROM Write Timing

X repetition

X: number of writes performed at (7) to (9)

4.3 PROM READ PROCEDURE

The PROM contents can be read in the verify mode by using the following procedure: (see the following figure)
(1) Connect unused pins to Vss. Set the X 1 pin low.
(2) Supply 5 volts to the VDD and VPP pins.
(3) Wait for $10 \mu \mathrm{~s}$.
(4) Select the clear program memory address mode.
(5) Supply 6 volts to the VDD and 12.5 volts to the VPP pins.
(6) Select the program inhibit mode.
(7) Select the verify mode. Apply four pulses to the X1 pin. Every four clock pulses will output the data stored in one address.
(8) Select the program inhibit mode.
(9) Select the clear program memory address mode.
(10) Return the Vdd and Vpp pins back to +5 volts.
(11) Turn off the power.

Fig. 4-2 PROM Read Timing

4.4 ERASING METHOD

The program data contents of the μ PD75P218KB are erased by lighting ultraviolet ray whose wavelength is about 250 nm on the window. The minimum amount of radiation exposure required to erase the contents completely is $15 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{cm}^{2}$ (ultraviolet ray strength times erase time).

This corresponds to about 15 to 20 minutes when using a UV lamp on the market (wavelength 254 nm , strength $12 \mathrm{~mW} / \mathrm{cm}^{2}$).

Cautions 1. The programmed data contents may also be erased if the uncovered window is exposed to direct sunlight or a fluorescent light even for several hours. Thus, to protect the data contents, cover the window with an opaque film.
NEC attaches quality-tested shading film to the UV EPROM products for shipping.
2. For normal EPROM erase, the distance between the light source and the window should be 2.5 cm or less.

Remark The erase time may be prolonged if the UV lamp is old or if the device window is dirty.

5. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	VDD		-0.3 to +7.0	V
	Vload		Vdd - 40 to $\mathrm{VdD}^{\text {+ }} 0.3$	V
	Vpp		-0.3 to +13.5	V
Input voltage	V		-0.3 to VDD +0.3	V
Output voltage	Vo	Other than display pins	-0.3 to VDD +0.3	V
	Vod	Display pins	VDD - 40 to $V_{D D}+0.3$	V
High-level output current	Іон	Single pin; other than display pins	-15	mA
		Single pin; S0-S9	-15	mA
		Single pin; T0-T15	-30	mA
		Total of all pins other than display	-20	mA
		Total of all display pins	-120	mA
Low-level output current	IoL	Single pin	17	mA
		Total of all pins	60	mA
Operating temperature	Topt		-40 to +70	C
Storage temperature	$\mathrm{T}_{\text {stg }}$		-65 to +150	${ }^{\circ} \mathrm{C}$

Operating Power Supply Voltage ($\mathrm{Ta}=-40$ to $+70^{\circ} \mathrm{C}$)

Parameter	Conditions	MIN.	MAX.	Unit
CPU Note 1		Note 2	6.0	V
Display controller		4.5	6.0	V
Timer/pulse generator		4.5	6.0	V
Other hardwares Note 1		2.7	6.0	V

Notes 1. The CPU does not include the system clock oscillator, the display controller, or the timer/pulse generator.
2. Varies according to the cycle time. See AC Characteristics.

Main System Clock Configurations ($\mathrm{T}_{\mathrm{a}}=-40$ to $+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{dD}=2.7$ to 6.0 V)

Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX	Unit
Ceramic resonator		Note 1 Oscillation ($f \times x$) frequency	VDD $=$ Oscillator operating voltage range	2.0		6.2	MHz
		Note 2 Oscillation stabilization time	After VDD reaches the minimum oscillator operating voltage range			4	ms
Crystal resonator		Note 1 Oscillation frequency (fxx)		2.0	4.19	6.2	MHz
		Note 2	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V			10	ms
		Oscillation stabilization time				30	ms
External clock		Note 1 X1 input frequency (fx)		2.0		6.2	MHz
		X1 input highand low-level width (txh, txL)		81		250	ns

Subsystem Clock Configurations ($\mathrm{Ta}_{\mathrm{a}}=-40$ to $+70^{\circ} \mathrm{C}$, V dD $=2.7$ to 6.0 V)

Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Note 1 Oscillation frequency (f_{xt})		32	32.768	35	kHz
			$V_{\text {DD }}=4.5$ to 6.0 V		1.0	2	S
		Oscillation stabilization time				10	S
External clock	XT1 XT2 Open 	XT1 input frequency (fxt)		32		100	kHz
		XT1 input highand low-level width ($\mathrm{txTh}, \mathrm{txTL}$)		5		15	$\mu \mathrm{s}$

Notes 1. The oscillator frequency and input frequency indicate only the oscillator characteristics. Refer to the AC Characteristics for the instruction execution time.
2. The oscillation stabilization time is the time required for the oscillation to stabilize after Vod is applied and reaches the VdD spec or after STOP mode is released.

Capacitance ($\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}$ DD $=0 \mathrm{~V}$)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance		Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V			15	pF
Output capacitance	Other than display output	Cout				15	pF
	Display output					35	pF
Input/Output capacitance		Clo_{10}				15	pF

Recommended Oscillation Circuit Constants

Main System Clock: Ceramic Resonator ($\mathrm{T}_{\mathrm{a}}=-40$ to $+70^{\circ} \mathrm{C}$)

Manufacturer	Part number	Frequency (MHz)	Capacitance (pF)		Oscillation voltage (V)	
			MIN.	MAX.	MIN.	MAX.
Murata	CSA $\times \times \times \mathrm{MG}$	2.00-2.44	30	30	2.7	6.0
	CST $\times \times \times \mathrm{MT}$		On-chip	On-chip		
	CSA $\times \times \times$ MG093	2.45-3.50	30	30		
	CST×××MGW093		On-chip	On-chip		
	CSA $\times \times \times$ MGU	2.51-6.00	30	30		
	CST $\times \times \times$ MGWU		On-chip	On-chip		
	CSA $\times \times \times$ MG	2.45-3.50	30	30	3.0	
	CST $\times \times \times$ MGW		On-chip	On-chip		
	CSA $\times \times \times$ MG	2.51-6.00	30	30	3.3	
	CST $\times \times \times$ MGW		On-chip	On-chip		
Kyocera	KBR - 2.0MS	2.0	47	47	2.7	6.0
	KBR-4.0MWS	4.0	33	33		
	KBR - 4.19MWS	4.19				
	KBR - 6.0MWS	6.0				

DC Characteristics ($\mathrm{T}_{\mathrm{a}}=-40$ to $+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=2.7$ to 6.0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
High-level input voltage	V_{1+1}	All except ports $0,1,6 ; \mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1, \overline{\mathrm{RESET}}$			0.7 Vdo		V ${ }_{\text {d }}$	V
	$\mathrm{V}_{\mathrm{H} 2}$	Port 0, 1, $\overline{\text { RESET }}$			$0.75 \mathrm{~V}_{\mathrm{DD}}$		V ${ }_{\text {d }}$	V
	$\mathrm{V}_{\text {н }}$	X1, X2, XT1			VDD - 0.4		V ${ }_{\text {d }}$	V
	$\mathrm{V}_{\text {IH4 }}$	Port 6	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V		0.65 VDD		V ${ }_{\text {d }}$	V
					0.7 V do		Vod	V
Low-level input voltage	$\mathrm{V}_{\text {IL1 }}$	All except ports $0,1,6 ; \mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1, \overline{\mathrm{RESET}}$			0		0.3 VDD	V
	$\mathrm{V}_{\text {LL2 }}$	Port 0, 1, 6, $\overline{\mathrm{RESET}}$			0		0.2 V DD	V
	VIL3	X1, X2, XT1			0		0.4	V
High-level output voltage	Vон	All outputs	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , Іон $=-1 \mathrm{~mA}$		$\mathrm{V}_{\text {dD }}-1.0$			V
				Іон $=-100 \mu \mathrm{~A}$	$V_{D D}-0.5$			V
Low-level output voltage	VoL	Port 4, 5	$\mathrm{V}_{\mathrm{DD}}=4.5$ to	$0 \mathrm{~V}, \mathrm{loL}=15 \mathrm{~mA}$		0.4	2.0	V
		All outputs	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0	0 V , lol $=1.6 \mathrm{~mA}$			0.4	V
				loL $=400 \mu \mathrm{~A}$			0.5	V
High-level input leakage current	ІІн1	All except $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$				3	$\mu \mathrm{A}$
	ІІн2	X1, X2, XT1					20	$\mu \mathrm{A}$
Low-level input leakage current	\|ıL1	All except $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1$	V IN $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
	İı2	X1, X2, XT1					-20	$\mu \mathrm{A}$
High-level output leakage current	İон	All outputs	$V_{\text {OUT }}=\mathrm{V}_{\text {DD }}$				3	$\mu \mathrm{A}$
Low-level output leakage current	ILoL1	All except display outputs	Vout $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
	ILoL2	Display outputs	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {LOAD }}=$	Vdo - 35 V			-10	$\mu \mathrm{A}$
Display output current	lod	S0-S9	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} \\ & V_{O D}=V_{D D}-2 \mathrm{~V} \end{aligned}$		-3	-5.5		mA
		T0-T15			-15	-22		mA
On-chip pull-down resistor	RL	Display outputs	$\mathrm{V}_{\text {Od }}-\mathrm{V}_{\text {LOAD }}=$	35 V	25	70	135	k Ω
Power supply current ${ }^{\text {Note } 1}$	Ido1	6.0 MHz crystal oscillator	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 1$	\% Note 2		6.5	18.0	mA
			$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 1$	\% Note 3		0.85	2.5	mA
	Iod2		HALT mode	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$		1350	4000	$\mu \mathrm{A}$
				$\mathrm{V}_{\text {DD }}=3 \mathrm{~V} \pm 10 \%$		450	1350	$\mu \mathrm{A}$
	lod1	4.19 MHz crystal oscillator$\mathrm{C} 1=\mathrm{C} 2=15 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10$ \% Note 2			4.0	12.0	mA
			$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10$ \% Note 3			0.55	1.5	mA
	1 dD 2		HALT mode	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$		900	2700	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$		300	900	$\mu \mathrm{A}$
	IDD3	Note 4 32 kHz crystal oscillator	V DD $=3 \mathrm{~V} \pm 10 \%$			100	300	$\mu \mathrm{A}$
	1 ld 4		HALT mode	$V_{D D}=3 \mathrm{~V} \pm 10 \%$		20	60	$\mu \mathrm{A}$
			STOP mode	$\mathrm{V}_{\text {DD }}=3 \mathrm{~V} \pm 10 \%$		5	15	$\mu \mathrm{A}$
	IoD5	$\begin{aligned} & \text { XT1 = } 0 \mathrm{~V} \\ & \text { STOP mode } \end{aligned}$	$V_{D D}=5 \mathrm{~V} \pm 10 \%$			0.5	20	$\mu \mathrm{A}$
			V DD $=3 \mathrm{~V} \pm 10 \%$			0.1	10	$\mu \mathrm{A}$

Notes 1. Does not include pull-down resistor current.
2. Value during high-speed operation and when the processor clock control (PCC) register is set to 0011.
3. Value during low-speed operation and when the PCC register is set to 0000.
4. Value when the system clock control register (SCC) is set to 1001, generation of the main system clock pulse is stopped, and the CPU is operated by the subsystem clock pulse.

AC Characteristics ($\mathrm{T}_{\mathrm{a}}=-40$ to $+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=2.7$ to 6.0 V)

Notes 1. The CPU clock (Φ) cycle time is determined by the oscillator frequency of the connected resonator, the system clock control register (SCC), and the processor clock control register (PCC).
The right chart shows the cycle time tcy characteristics for power supply voltage Vod during the main system clock operation.
2. 2 tcy or $128 / \mathrm{fxx}$, depending on the setting of the interrupt mode register (IMO).

AC Timing Test Points (Except X1, XT1)

Clock Timing

TIO Timing

Serial Transfer Timing

Interrupt Input Timing

INT0, 1, 2, 4

$\overline{\text { RESET }}$ Input Timing

Data Memory STOP Mode Low Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{a}}=-40$ to $+70^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR		2.0		6.0	V
Data retention current Note 1	IDDDR	VDDDR $=2.0 \mathrm{~V}$		0.1	10	$\mu \mathrm{~A}$
Release signal SET time	tsREL		0			$\mu \mathrm{~s}$
Oscillation stabilization time Note 2	twalt	Release by $\overline{\text { RESET input }}$		$2^{17 / f_{x}}$		ms
		Release by interrupt request		Note 3		ms

Notes 1. Does not include pull-down resistor current.
2. The oscillation stabilization WAIT time is the time during which the CPU operation is stopped to prevent unstable operation while the oscillation is started.
3. The WAIT time depends on the setting of the basic interval timer mode register (BTM) according to the following table.

BTM3	BTM2	BTM1	BTMO	WAIT time	
				($\mathrm{fxx}=6.0 \mathrm{MHz}$)	($\mathrm{fxx}=4.19 \mathrm{MHz}$)
-	0	0	0	$2^{20} / \mathrm{fxx}$ (approx. 175 ms)	$2^{20} / \mathrm{fxx}$ (approx. 250 ms)
-	0	1	1	$2^{17} / \mathrm{fxx}$ (approx. 21.8 ms)	$2^{17} / \mathrm{fxx}$ (approx. 31.3 ms)
-	1	0	1	$2^{15} / \mathrm{fxx}$ (approx. 5.46 ms)	$2^{15} / \mathrm{fxx}$ (approx. 7.82 ms)
-	1	1	1	$2^{13 / f x x}$ (approx. 1.37 ms)	$2^{13 / \mathrm{fxx}}$ (approx. 1.95 ms)

Data Retention Timing (STOP mode is released by $\overline{\text { RESET input) }}$

Data Retention Timing (STOP mode is released by interrupt signal)

DC Programming Characteristics ($\mathrm{T}_{\mathrm{a}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \pm 0.3 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	VIH1	All except X 1 , X2	0.7 Vdd		V ${ }_{\text {d }}$	V
	$\mathrm{V}_{\mathrm{H} 2}$	X1, X2	VDD - 0.5		VDD	V
Low-level input voltage	VIL1	All except X 1 , X2	0		0.3VDD	V
	VIL2	X1, X2	0		0.4	V
Input leakage current	ILI	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$			10	$\mu \mathrm{A}$
High-level output voltage	V OH	I он $=-1 \mathrm{~mA}$	VdD - 1.0			V
Low-level output voltage	Vol	$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
Vod power supply current	IdD				30	mA
VPP power supply current	IPP	$\mathrm{MD0}=\mathrm{V}_{\mathrm{IL}}, \mathrm{MD1}=\mathrm{V}_{\mathrm{IH}}$			30	mA

Cautions 1. Vpp must not exceed +13.5 V, including overshoot.

2. VDD is to be applied prior to $V_{P P}$ and to be removed after VPP is removed.

AC Programming Characteristics $\left(\mathrm{T}_{\mathrm{a}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}\right.$ dD $=6.0 \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \pm 0.3 \mathrm{~V}$, Vss $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time Note 2 (to MDO \downarrow)	$\mathrm{t}_{\text {As }}$	tas		2			$\mu \mathrm{s}$
MD1 setup time (to MD0 \downarrow)	Tm1s	toes		2			$\mu \mathrm{s}$
Data setup time (to MD0 \downarrow)	tbs	tos		2			$\mu \mathrm{s}$
Address hold time Note 2 (from MD0 \uparrow)	TAH	$\mathrm{t}_{\text {AH }}$		2			$\mu \mathrm{s}$
Data hold time (from MD0 \uparrow)	tDH	tD		2			$\mu \mathrm{s}$
MD0 $\uparrow \rightarrow$ data output float delay time	tbF	tbF		0		130	ns
VPP setup time (to MD3 \uparrow)	tvps	tvps		2			$\mu \mathrm{s}$
$\mathrm{V}_{\text {DD }}$ setup time (to MD3 \uparrow)	tvos	tvcs		2			$\mu \mathrm{s}$
Initialized program pulse width	tpw	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1 \uparrow)	tmos	tces		2			$\mu \mathrm{s}$
MD0 $\downarrow \rightarrow$ data output delay time	tDv	tov	$\mathrm{MD0}=\mathrm{MD1}=\mathrm{V}_{\mathrm{IL}}$			1	$\mu \mathrm{s}$
MD1 hold time (to MD0 个)	tM1H	toen	$\mathrm{t}_{\mathrm{M} 1 \mathrm{H}}+\mathrm{t}_{\mathrm{M} 1 \mathrm{R}} \geq 50 \mu \mathrm{~s}$	2			$\mu \mathrm{s}$
MD1 recovery time (from MD0 \downarrow)	tM1R	tor		2			$\mu \mathrm{s}$
Program counter reset time	tPCR	-		10			$\mu \mathrm{s}$
X1 input low- and high-level width	txh, txL	-		0.125			$\mu \mathrm{s}$
X1 input frequency	f_{X}	-				4.19	MHz
Initial mode set time	t	-		2			$\mu \mathrm{s}$
MD3 setup time (to MD1 \uparrow)	tm3s	-		2			$\mu \mathrm{s}$
MD3 hold time (from MD1 \downarrow)	tм3н	-		2			$\mu \mathrm{s}$
MD3 setup time (to MD0 \downarrow)	tM3SR	-	During program read cycle	2			$\mu \mathrm{s}$
Address Note $2 \rightarrow$ Data output delay time	tDad	tacc	During program read cycle	2			$\mu \mathrm{s}$
Address Note $2 \rightarrow$ Data output hold time	thad	toн	During program read cycle	0		130	ns
MD3 hold time (from MD0 \uparrow)	tmз ${ }_{\text {mr }}$	-	During program read cycle	2			$\mu \mathrm{s}$
MD3 $\downarrow \rightarrow$ Data output float delay time	t p FR	-	During program read cycle	2			$\mu \mathrm{s}$

Notes 1. These symbols correspond to those of the μ PD27C256A.
2. The internal address signal is incremented by the rising edge of the fourth $X 1$ pulse; it is not connected to an external pin.

Program Memory Write Timing

Program Memory Read Timing

6. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
2) Item "K" to center of leads when formed parallel.

ITEM MILLIMETERS	INCHES	
A	58.68 MAX.	2.311 MAX.
B	1.78 MAX.	0.070 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ± 0.10	$0.020_{-0.000}^{+0.004}$
F	0.9 MIN.	0.035 MIN.
G	3.2 ± 0.3	0.126 ± 0.012
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
M	$0.25_{-0.05}^{+0.10}$	$0.010_{-0.000}^{+0.004}$
N	0.17	0.007
R	$0 \sim 15^{\circ}$	$0 \sim 15^{\circ}$
		P64C-70-750A,C-1

64 PIN PLASTIC OFP (14×20)

note
Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

P64GF-100-3B8,3BE,3BR-1

ITEM	MILLIMETERS	INCHES
A	23.6 ± 0.4	0.929 ± 0.016
B	20.0 ± 0.2	$0.795_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.6 ± 0.4	0.693 ± 0.016
F	1.0	0.039
G	1.0	0.039
H	0.40 ± 0.10	$0.016_{-0.005}^{+0.004}$
I	0.20	0.008
J	$1.0($ T.P.)	$0.039($ T.P.)
K	1.8 ± 0.2	$0.071_{-0.009}^{+0.008}$
L	0.8 ± 0.2	$0.031_{-0.0008}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.12	0.005
P	2.7	0.106
Q	0.1 ± 0.1	0.004 ± 0.004
S	3.0 MAX.	0.119 MAX.

64 PIN CERAMIC WOFN

ITEM		MILLIMETERS
A	20.0 ± 0.4	INCHKW-100A-2
B	19.0	$0.787_{-0.016}^{+0.017}$
C	13.2	0.748
D	14.0 ± 0.4	0.520
E	1.64	0.551 ± 0.016
F	2.14	0.084
G	3.556 MAX.	0.140 MAX.
H	0.7 ± 0.10	$0.028_{-0.005}^{+0.004}$
I	0.10	0.004
J	1.0 (T.P.)	0.039 (T.P.)
K	1.0 ± 0.2	$0.039_{-0.008}^{+0.009}$
Q	C 0.25	C 0.010
R	1.0	0.039
S	1.0	0.039
T	R 3.0	R 0.118
U	12.0	0.472
W	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$

7. RECOMMENDED SOLDERING CONDITIONS

The following conditions (See table below) must be met when soldering this product.
Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

TYPE OF SURFACE MOUNT DEVICE
μ PD75P218GF-3BR

Soldering Process	Soldering Conditions	Symbol
Wave Soldering	Solder temperature: $260{ }^{\circ} \mathrm{C}$ or lower, Flow time: 10 seconds or less, Exposure limit Note: 7 days (10 hour pre-baking is required at $125{ }^{\circ} \mathrm{C}$ afterwards)	WS60-107-1
	Number of flow processes: 1	

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: $25{ }^{\circ} \mathrm{C}$ and relative humidity at 65% or less.

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".

TYPE OF THROUGH HOLE DEVICE
μ PD75P218CW

Soldering Process	Soldering Conditions
Wave Soldering (only lead part)	Solder temperature: $260{ }^{\circ} \mathrm{C}$ or lower, Flow time: 10 seconds or less
Partial Heating Pin temperature: $260{ }^{\circ} \mathrm{C}$ or lower, Method	

Caution This wave soldering should be applied only to lead part, and do not jet molten solder on the surface of package.

APPENDIX DEVELOPMENT TOOLS

The following development tools are provided for the development of a system which employs the μ PD75P218.

Language processor

RA75X relocatable assembler	This program converts symbolic source code for the μ PD75000 series of microcomputers into executable absolute address object code. There are also functions such as generating a symbol table and optimizing branch instructions automatically.			
	Host machine			Part number
		OS	Distribution media	
	PC-9800 series	$\text { MS-DOS }{ }^{\text {™ }}$	$3.5-$ inch 2HD	μ S5A13RA75X
		$\binom{\text { to }}{\text { Ver. 3.30C }}$	5-inch 2HD	μ S5A10RA75X
	IBM PC series	PC DOS ${ }^{\text {TM }}$ (Ver. 3.1)	5-inch 2HC	μ S7B10RA75X

PROM programming tools

Hardware	PG-1500	The PG-1500 PROM programmer is used together with an accessory board and optional program adapter. It allows the user to program a single chip microcomputer containing PROM and typical 256K-bit to 1M-bit PROMs from a keyboard or a remote control.			
	PA-75P216ACW	PROM programmer adapter dedicated to μ PD75P218CW. Connect the programmer adapter to PG-1500 for use.			
	PA-75P218GF	PROM programmer adapter dedicated to μ PD75P218GF. Connect the programmer adapter to PG-1500 for use.			
	PA-75P218KB	PROM programmer adapter dedicated to μ PD75P218KB. Connect the programmer adapter to PG-1500 for use.			
Software	PG-1500 controller	This program enables the host machine to control the PG-1500 through the serial and parallel interfaces.			
		Host machine	os	Distribution media	Part number
		PC-9800 series	$\begin{gathered} \text { MS-DOS } \\ \text { Ver. } 3.10 \end{gathered}$	3.5 -inch 2HD	μ S5A13PG1500
			$\binom{\text { to }}{\text { Ver. 3.30C }}$	5-inch 2HD	μ S5A10PG1500
		IBM PC series	PC DOS (Ver. 3.1)	5-inch 2HC	μ S7B10PG1500

Debugging tools

Hardware	IE-75000-R Note 1 IE-75000-R-EM Note 2	The IE-75000-R is an in-circuit emulator available for the 75X series. This emulator is used together with the emulation probe to develop application systems of the μ PD75P218. For efficient debugging, the emulator is connected to the host machine and PROM programmer.			
		The IE-75000-R-EM is an emulation board for the IE-75000-R and IE-75001-R. The IE-75000-R contains the emulation board. The emulation board is used together with the IE-75000-R or IE75001-R to evaluate the μ PD75P218.			
	IE-75001-R	The IE-75001-R is an in-circuit emulator available for the 75X series. This emulator is used together with the IE-75000-R-EM ${ }^{\text {Note } 2} 2$ emulation board and emulation probe to develop application systems of the μ PD75P218. For efficient debugging, the emulator is connected to the host machine and PROM programmer.			
	EP-75216ACW-R	Emulation probe for the μ PD75P218CW. Connect this probe to the IE-75000-R or IE-75001-R for use.			
	EP-75216AGF-R EV-9200G-64	Emulation probe for the μ PD75P218GF. Connect this probe to the IE-75000-R or IE-75001-R for use. A 64-pin conversion socket, the EV-9200G-64, attached to the probe facilitates the connection of the probe with the user system.			
Software	IE control program	This program enables the host machine to control the IE-75000-R or IE-75001-R on the host machine through the RS-232-C interface.			
		Host machine	OS	Distribution media	Part number
		PC-9800 series	$\begin{gathered} \text { MS-DOS } \\ \left(\begin{array}{c} \text { Ver. } 3.10 \\ \text { to } \\ \text { Ver. } 3.30 \mathrm{C} \end{array}\right) \end{gathered}$	$3.5-\mathrm{inch} 2 \mathrm{HD}$	μ S5A13IE75X
				5-inch 2HD	μ S5A10IE75X
		IBM PC series	PC DOS (Ver. 3.1)	5-inch 2HC	μ S7B10IE75X

Notes 1. Provided only for maintenance purposes.
2. The IE-75000-R-EM is an option.

Remark NEC is not responsible for the operation of the IE control program and assembler unless it runs on any host machine with the operation system listed above.

Configuration of Development Tools

Relocatable assembler

Notes 1. IE-75001-R is not provided with IE-75000-R-EM (option) 2. EV-9200G-64
[MEMO]

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an antistatic container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.
Application examples recommended by NEC Corporation
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

FIP ${ }^{\circledR}$ is a trademark of NEC Corporation.
MS-DOS ${ }^{\text {TM }}$ is a trademark of Microsoft Corporation.
PC DOS ${ }^{\text {TM }}$ is a trademark of IBM Corporation.

[^0]: x : Don't care.

