

mos integrated circuit $\mu PD75P218$

4-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD75P218 is a one-time PROM version that can be written to only once or an EPROM version that allows program writing, erasing, and rewriting, of the μ PD75218 Note.

Since the program can be written by the user, the μ PD75P218 is suitable for preproduction use during system development, or limited production.

Read this material together with the μ PD75218 materials.

Note Under development

FEATURES

- μPD75218 compatible
- On-chip 16K-byte mode/32K-byte mode switching function
- Operates at the same power supply voltage range (2.7 to 6.0 V) as the mask ROM version μ PD75218.
- 32640 × 8 bits of PROM
- 1024 × 4 bits of RAM
- No pull-down resistor for Port 6
- · High breakdown voltage display output
 - S0 to S8, T0 to T9: On-chip pull-down resistor
 - \$9, T10 to T15 : Open drain
- No power-on reset circuit

Caution No mask-option pull-down resistor is provided.

ORDERING INFORMATION

Part Number	Package	Quality Grade
μPD75P218CW	64-pin plastic shrink DIP (750 mil)	Standard
μ PD75P218GF-3BR	64-pin plastic QFP (14 $ imes$ 20 mm)	Standard
μ PD75P218KB	64-pin ceramic LCC with window (14 \times 20 mm)	Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The word "PROM" in this document refers to the common parts of the one-time PROM products and EPROM products.

The information in this document is subject to change without notice.

Document No. IC-2541A (O.D. No. IC-7962A) Date Published **March 1993 P** Printed in Japan

PIN CONFIGURATION (Top View)

1. PIN FUNCTIONS

1.1 PORT PINS

Pin name	Input/ output	Shared pin	Fun	ction	8-bit I/O	When reset
P00	Input	INT4	4-bit input port (PORT0).		×	Input
P01	I/O	SCK				
P02	I/O	so				
P03	Input	SI				
P10	Input	INT0/VPP	4-bit input port (PORT1).	With noise elimination		Input
P11		INT1		function		
P12		INT2				
P13		TI0				
P20	I/O	_	4-bit I/O port (PORT2).		×	Input
P21	1	-				
P22		_				
P23		BUZ				
P30 - P33	I/O	MD0 - MD3	Programmable 4-bit I/O port (PORT3). I/O can be specified bit by bit.			Input
P40 - P43	I/O	-	4-bit I/O port (PORT4). Can directly drive LEDs.	Data input/output pins for the PROM write and verify (Four low-order bits).	0	Input
P50 - P53	I/O	-	4-bit I/O port (PORT5). Can directly drive LEDs.	Data input/output pins for the PROM write and verify (Four high-order bits).		Input
P60 - P63	I/O	-	Programmable 4-bit I/O port (PORT6). I/O can be specified bit by bit. Suitable for key input.		×	Input
PH0	Output	T13/S12	4-bit P-ch open drain high		×	High
PH1		T12/S13	current output port (PORT	H).		impedance
PH2		T11/S14	Can directly drive LEDs.			
PH3		T10/S15				

1.2 NON-PORT PINS

D:	Input/	Shared		Francis	\A/I ₂ = =		
Pin name	output	pin		Function	When reset		
T0 - T9		-	Note 1	High breakdown voltage large current output pin for digit output	Low level		
T10/S15 - T13/S12	Output	PH3 - PH0	Note 2	High breakdown voltage large current output pin for digit/segment output The remainder of the pins can be used as PORTH.	High impedance		
T14/S11, T15/S10		-		High breakdown voltage large current output pin for digit/segment output Static output is also available.			
S9				High breakdown voltage output pin for segment output Static output is also available.			
S0 - S8			Note 1	High breakdown voltage output pin for segment output	Low level		
PPO	Output	-	Output fo	or receiving pulse signal for timer/pulse generator	High impedance		
TIO	Input	P13	Input for receiving external event pulse signal for timer/ event counter				
SCK	I/O	P01	Serial clock I/O		Serial clock I/O		Input
SO	I/O	P02	Serial data output or serial data I/O		Input		
SI	Input	P03	Serial dat	Serial data input or normal input			
INT4	Input	P00	_	ection vectored interrupt input sing edge or falling edge detection)			
INT0	Input	P10/V _{PP}	Edge dete	ection vectored interrupt input with noise elimination			
INT1		P11	(detection	n edge selectable)			
INT2	Input	P12	Edge dete	ection testable input (rising edge detection)			
BUZ	I/O	P23	Fixed freq	uency output pin (for buzzer or system clock trimming)	Input		
X1, X2		-	generatio When ext	Crystal/ceramic resonator connection for main system clock generation. When external clock is used, it is applied to X1, and its eserve phase signal is applied to X2.			
XT1, XT2		_	l '	onnection for subsystem clock generation. ernal clock is used, it is applied to XT1, and XT2 is open.			
RESET	Input	-	System re	eset input (low level active)			
MD0 - MD3	I/O	P30 - P33	Operation	mode selection pins during the PROM write/verify cycles			
V _{PP}		P10/INT0		+12.5 V is applied as the programming voltage during the PROM write/verify cycles			
VLOAD		_	Pull-dowr	Pull-down resistor connection pin of FIP® controller/driver			
V _{DD}		-		power supply. +6 V is applied as the programming uring the PROM write/verify cycles			
Vss		-	GND pote	ential			
NC Note 3		-	No conne	ection			

Note 1. On-chip pull-down resistor

- 2. Open drain output
- 3. When using a printed board with a μ PD75216A, 75217, or 75218, connect the NC pin to the VPRE.

1.3 PIN INPUT/OUTPUT CIRCUITS

The input/output circuit diagram for each μ PD75P218 pin is shown in Fig. 1-1 in a simplified manner. For the correspondence of the each pin and input/output type number, refer to Table 1-1.

Table 1-1 Pins and Input/Output Type Numbers

Pin name	I/O type	Pin name	I/O type
P00/INT4	B	P50 - P53	E
P01/SCK	Ē	P60 - P63	E
P02/SO	G	T0 - T9	I-E
P03 - SI	B	T10/S15/PH3 - T13/S12/PH0	I-D
P10/INT0/VPP	B	T14/S11, T15/S10	I-D
P11/INT1, P12/INT2		S0 - S8	I-E
P13 - TI0		S9	I-D
P20 - P22	E	PPO	D
P23/BUZ		RESET	®
P30/MD0 - P33/MD3	E	VLOAD	I-E
P40 - P43	E		

Remark I/O type enclosed with a circle indicates Schmitt triggered input.

Fig. 1-1 Pin Input/Output Circuit

1.4 PROCESSING OF UNUSED PINS

Table 1-2 Recommended Connection of Unused Pins

Pin name	Recommended connection
P00/INT4	Connect to Vss
P01/SCK	Connect to Vss or VDD
P02/SO	
P03/SI	
P10/INT0/VPP	Connect to Vss
P11/INT1, P12/INT2	
P13/T10	
P20 - P22	Input state: Connect to Vss or VDD
P23/BUZ	Output state: Open
P30/MD0 - P33/MD3	
P40 - P43	
P50 - P53	
P60 - P63	
PPO	Open
S0 - S9	
T15/S10, T14/S11	
T0 - T9	
T10/S15/PH3 - T13/S12/PH0	
XT1	Connect to Vss or VDD
XT2	Open
VLOAD when no on-chip load resistor	Connect to Vss or VDD

2. DIFFERENCES BETWEEN THE μ PD75P218 AND THE μ PD75P216A, 75217, 75218

Item	Part number	μPD75P216A	μPD75217	μPD75218 Note	μPD75P218		
ROM		One-time PROM 16K × 8	Mask ROM 24K × 8	Mask ROM 32K × 8	PROM 32K × 8		
RAM		512 × 4	768 × 4 1024 × 4				
FIP control- segments		9 - 16 segments					
ler/driver	digits		9 - 16 digits				
Pull-down	P60 - P63	Not available	Mask-	option	Not available		
resistors	S0 - S8, T0 - T9	On-chip	Mask-o	option	On-chip		
	SD9, T10 - T15	Not available (open drain)	Mask-option		Not available (open drain)		
Pin connection	P10	INT0/V _{PP} (common use)	INTO (common use)		INT0/V _{PP} (common use)		
	P30 - P33	MD0 - MD3 (common use)	No common use		MD0 - MD3 (common use)		
	V _{PRE}	Not available (NC)	Available		Not available (NC)		
Operating aml	bient tempera-	−10 to +70 °C	-40 to	+85 °C	−40 to +70 °C		
Power supply	voltage	5 V ± 10 %		2.7 - 6.0 V	1		
Stack area		Bank 0	Bank 0 - 2	Bank	0 - 3		
16K-byte mode/32K-byte mode switching function		Not available		Available			
Package		64-pin plastic shrink DIP	64-pin plastic shrink DIP 64-pin plastic QFP		64-pin plastic shrink DIP 64-pin plastic QFP 64-pin ceramic LCC with window		

Note Under development

3. 16K-BYTE MODE/32K-BYTE MODE SWITCHING FUNCTION

16K-byte mode or 32K-byte mode can be selected by setting the stack bank selection register (SBS). The μ PD75P218 can then be used to evaluate the μ PD75216A, μ PD75217, and μ PD75218.

3.1 DIFFERENCES BETWEEN 16K-BYTE MODE AND 32K-BYTE MODE

Table 3-1 16K-byte Mode and 32K-byte Mode Differences

Item	16K-byte Mode	32K-byte Mode
Stack operation at subroutine call instruction execution	2-byte stack	3-byte stack
Stack area	Bank 0	Bank 0 to bank 3
CALL instruction	3 machine cycles	4 machine cycles
TCALL instruction by GETI		
CALLF instruction	2 machine cycles	3 machine cycles
BRA instruction	Undefined operation	Normal operation
CALLA instruction		
Program counter bit 14	0 fixed	Corresponds to branch instruction, call instruction
Corresponding mask ROM version	μPD75216A (S-DIP, QFP)	μPD75217 (S-DIP, QFP) μPD75218 (S-DIP, QFP)

3.2 16K-BYTE MODE AND 32K-BYTE MODE SWITCHING

16K-byte mode and 32K-byte mode are switched by the stack bank selection register. The stack bank selection register format is shown in Fig. 3-1.

The stack bank selection register is set by 4-bit memory manipulation instruction. RESET input sets bit 3 of the stack bank selection register to "1" and changes from 32K-byte mode to 16K-byte mode. When 16K-byte mode is used, manipulating the stack bank selection register is unnecessary. When 32K-byte mode is used, the stack bank selection register must always be initialized to 00××B Note 1 at the beginning of the program.

Fig. 3-1 Stack Bank Selection Register Format

Caution When using 32K-byte mode, execute a subroutine call instruction and an interrupt enable instruction after the stack bank selection register is set after RESET input.

Notes 1. Set the desired value in $\times\times$.

2. When the 16K-byte mode is used after RESET input, the stack bank selection register does not have to be manipulated.

4. PROM (PROGRAM MEMORY) WRITE AND VERIFY

The PROM contained in the μ PD75P218 is one-time PROM or EPROM for writing, erasing, and rewriting. Table 4-1 shows the pin functions during the write and verify cycles. Note that it is not necessary to enter an address, because the address is updated by pulsing the X1 clock pins.

Table 4-1 PROM Write and Verify Pin Functions

Pin Name	Function
VPP	Normally 2.7 to 6 V; 12.5 V is applied during the write/verify cycles.
X1, X2	After a write/verify write, the X1 and X2 clock pins are pulsed. The inverted signal of the X1 should be input to the X2. Note that these pins are also pulsed during a read.
MD0 - MD3	Operation mode selection pins during the write/verify cycles
P40 - P43 (Four low-order bits) P50 - P53 (Four high-order bits)	8-bit data input/output pins during the write/verify cycles
V _{DD}	Supply voltage Normally 2.7 to 6 V; 6 V is applied during the write/verify cycles.

Cautions 1. The pins not used for write and verify should be processed as follows.

- 2. An opaque film should be placed over the UV erase window of the μ PD75P218KB except when erasing the EPROM contents.
- 3. The μ PD75P218CW/GF does not have a UV erase window, thus the PROM contents cannot be erased with ultraviolet ray.

4.1 PROM WRITE AND VERIFY OPERATION

When +6 V and +12.5 V are applied to the VDD and VPP pins, respectively, the PROM is placed in the write/verify mode. The operation is selected by the MD0 to MD3 pins, as shown in Table 4-2.

Table 4-2 PROM Write and Verify Operation Mode

	Op	eration Mod	Operation Mode					
VPP	V _{DD}	MD0	MD1	MD2	MD3	Operation Mode		
+12.5 V	+6 V	Н	L	Н	L	Clear program memory address to 0		
		L	Н	Н	Н	Write mode		
		L	L	Н	Н	Verify mode		
		Н	×	Н	Н	Program inhibit		

x: Don't care.

4.2 PROM WRITE/VERIFY PROCEDURE

PROMs can be written at high speed using the following procedure: (see the following figure)

- (1) Connect unused pins to Vss. Set the X1 pin low.
- (2) Supply 5 volts to the VDD and VPP pins.
- (3) Wait for 10 μ s.
- (4) Select the zero clear program memory address mode.
- (5) Supply 6 volts to the VDD and 12.5 volts to the VPP pins.
- (6) Select the program inhibit mode.
- (7) Write data in the 1 ms write mode.
- (8) Select the program inhibit mode.
- (9) Select the verify mode. If the data is correct, proceed to step (10). If not, repeat steps (7), (8) and (9).
- (10) Perform one additional write (duration of 1 ms × number of writes at (7) to (9)).
- (11) Select the program inhibit mode.
- (12) Apply four pulses to the X1 pin to increment the program memory address by one.
- (13) Repeat steps (7) to (12) until the end address is reached.
- (14) Select the zero clear program memory address mode.
- (15) Return the V_{DD} and V_{PP} pins back to + 5 volts.
- (16) Turn off the power.

Fig. 4-1 PROM Write Timing

X: number of writes performed at (7) to (9)

4.3 PROM READ PROCEDURE

The PROM contents can be read in the verify mode by using the following procedure: (see the following figure)

- (1) Connect unused pins to Vss. Set the X1 pin low.
- (2) Supply 5 volts to the VDD and VPP pins.
- (3) Wait for 10 μ s.
- (4) Select the clear program memory address mode.
- (5) Supply 6 volts to the V_{DD} and 12.5 volts to the V_{PP} pins.
- (6) Select the program inhibit mode.
- (7) Select the verify mode. Apply four pulses to the X1 pin. Every four clock pulses will output the data stored in one address
- (8) Select the program inhibit mode.
- (9) Select the clear program memory address mode.
- (10) Return the VDD and VPP pins back to + 5 volts.
- (11) Turn off the power.

Fig. 4-2 PROM Read Timing

4.4 ERASING METHOD

The program data contents of the μ PD75P218KB are erased by lighting ultraviolet ray whose wavelength is about 250 nm on the window. The minimum amount of radiation exposure required to erase the contents completely is 15 W·s/cm² (ultraviolet ray strength times erase time).

This corresponds to about 15 to 20 minutes when using a UV lamp on the market (wavelength 254 nm, strength 12 mW/cm²).

- Cautions 1. The programmed data contents may also be erased if the uncovered window is exposed to direct sunlight or a fluorescent light even for several hours. Thus, to protect the data contents, cover the window with an opaque film.
 - NEC attaches quality-tested shading film to the UV EPROM products for shipping.
 - 2. For normal EPROM erase, the distance between the light source and the window should be 2.5 cm or less.

Remark The erase time may be prolonged if the UV lamp is old or if the device window is dirty.

5. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (Ta = 25 °C)

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V _{DD}		-0.3 to +7.0	V
	VLOAD		V _{DD} - 40 to V _{DD} + 0.3	V
	V _{PP}		-0.3 to +13.5	V
Input voltage	Vı		-0.3 to V _{DD} + 0.3	V
Output voltage	Vo	Other than display pins	-0.3 to V _{DD} + 0.3	V
	Vod	Display pins	V _{DD} - 40 to V _{DD} + 0.3	V
High-level output	Іон	Single pin; other than display pins	-15	mA
current		Single pin; S0 - S9	-15	mA
		Single pin; T0 - T15	-30	mA
		Total of all pins other than display	-20	mA
		Total of all display pins	-120	mA
Low-level output	lou	Single pin	17	mA
current		Total of all pins	60	mA
Operating temperature	Topt		-40 to +70	°C
Storage temperature	T _{stg}		−65 to +150	°C

Operating Power Supply Voltage ($T_a = -40 \text{ to } +70 \text{ }^{\circ}\text{C}$)

Parameter	Conditions	MIN.	MAX.	Unit
CPU Note 1		Note 2	6.0	V
Display controller		4.5	6.0	V
Timer/pulse generator		4.5	6.0	V
Other hardwares Note 1		2.7	6.0	V

Notes 1. The CPU does not include the system clock oscillator, the display controller, or the timer/pulse generator.

2. Varies according to the cycle time. See AC Characteristics.

Main System Clock Configurations ($T_a = -40 \text{ to } +70 ^{\circ}\text{C}$, V DD = 2.7 to 6.0 V)

Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X1 X2	Note 1 Oscillation (fxx) frequency	VDD = Oscillator operating voltage range	2.0		6.2	MHz
	C1 — C2	Note 2 Oscillation stabilization time	After VDD reaches the minimum oscillator operating voltage range			4	ms
Crystal resonator	X1 X2	Note 1 Oscillation frequency (fxx)		2.0	4.19	6.2	MHz
		Note 2	V _{DD} = 4.5 to 6.0 V			10	ms
	$C1 \stackrel{\leftarrow}{=} C2$	Oscillation stabilization time				30	ms
External clock	X1 X2	Note 1 X1 input fre- quency (fx)		2.0		6.2	MHz
	mPD74HCU04	X1 input high- and low-level width (txH, txL)		81		250	ns

Subsystem Clock Configurations ($T_a = -40 \text{ to } +70 \,^{\circ}\text{C}$, V DD = 2.7 to 6.0 V)

Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT1 XT2	Note 1 Oscillation frequency (fxT)		32	32.768	35	kHz
	→ 330 kW	Note 2	V _{DD} = 4.5 to 6.0 V		1.0	2	s
	C3 + C4	Oscillation stabilization time				10	s
External clock	XT1 XT2 Open	XT1 input frequency (f _{XT})		32		100	kHz
	À .	XT1 input high- and low-level width (txth, txtl)		5		15	μs

- **Notes 1.** The oscillator frequency and input frequency indicate only the oscillator characteristics. Refer to the AC Characteristics for the instruction execution time.
 - 2. The oscillation stabilization time is the time required for the oscillation to stabilize after VDD is applied and reaches the VDD spec or after STOP mode is released.

Capacitance ($T_a = 25$ °C, $V_{DD} = 0 V$)

Para	ameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitar	nce	Cin	f = 1 MHz			15	pF
Output capacitance	Other than display output	Соит	Unmeasured pins returned to 0 V			15	pF
	Display output					35	pF
Input/Output ca	apacitance	Сю				15	pF

Recommended Oscillation Circuit Constants

Main System Clock: Ceramic Resonator ($T_a = -40 \text{ to } +70 \text{ }^{\circ}\text{C}$)

N4 6 .	Б	Frequency	Capacita	ance (pF)	Oscillation	voltage (V)
Manufacturer	Part number	(MHz)	MIN.	MAX.	MIN.	MAX.
Murata	CSA×××MG	2.00 - 2.44	30	30	2.7	6.0
	CSTxxxMT	1	On-chip	On-chip		
	CSA×××MG093	2.45 - 3.50	30	30		
	CST×××MGW093	1	On-chip	On-chip		
	CSAxxMGU	2.51 - 6.00	30	30	•	
	CSTxxxMGWU	1	On-chip	On-chip		
	CSA×××MG	2.45 - 3.50	30	30	3.0	
	CSTxxxMGW	1	On-chip	On-chip		
	CSA×××MG	2.51 - 6.00	30	30	3.3	
	CST×××MGW	1	On-chip	On-chip		
Kyocera	KBR – 2.0MS	2.0	47	47	2.7	6.0
	KBR – 4.0MWS	4.0	33	33		
	KBR – 4.19MWS	4.19				
	KBR – 6.0MWS	6.0				

DC Characteristics ($T_a = -40 \text{ to } +70 ^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$)

Parameter	Symbol	C	onditions		MIN.	TYP.	MAX.	Unit
High-level input voltage	V _{IH1}	All except ports 0, 1, 6;	X1, X2, XT1, R	ESET	0.7V _{DD}		V _{DD}	٧
	V _{IH2}	Port 0, 1, RESET	Port 0, 1, RESET		0.75V _{DD}		V _{DD}	٧
	VIH3	X1, X2, XT1			V _{DD} - 0.4		V _{DD}	٧
	V _{IH4}	Port 6	V _{DD} = 4.5 to 6	.0 V	0.65V _{DD}		V _{DD}	V
					0.7V _{DD}		V _{DD}	V
Low-level input voltage	V _{IL1}	All except ports 0, 1, 6;	X1, X2, XT1, R	ESET	0		0.3V _{DD}	V
	V _{IL2}	Port 0, 1, 6, RESET			0		0.2V _{DD}	٧
	V _{IL3}	X1, X2, XT1			0		0.4	V
High-level output voltage	Vон	All outputs	$V_{DD} = 4.5 \text{ to } 6$.0 V, Iон = -1 mA	V _{DD} - 1.0			٧
				Іон = -100 μΑ	V _{DD} - 0.5			٧
Low-level output voltage	Vol	Port 4, 5	V _{DD} = 4.5 to 6	.0 V, IoL = 15 mA		0.4	2.0	٧
		All outputs	V _{DD} = 4.5 to 6	.0 V, loL = 1.6 mA			0.4	٧
				Ιοι = 400 μΑ			0.5	V
High-level input leakage	Ішн1	All except X1, X2, XT1	VIN = VDD				3	μΑ
current	I _{LIH2}	X1, X2, XT1					20	μΑ
Low-level input leakage	ILIL1	All except X1, X2, XT1	V _{IN} = 0 V				-3	μΑ
current	ILIL2	X1, X2, XT1					-20	μΑ
High-level output leakage current	Ісон	All outputs	Vout = VDD				3	μΑ
Low-level output leakage current	ILOL1	All except display outputs	Vout = 0 V				-3	μΑ
	ILOL2	Display outputs	Vout = VLOAD =	: V _{DD} – 35 V			-10	μΑ
Display output current	Іор	S0-S9	V _{DD} = 4.5 to 6	.0 V	-3	-5.5		mA
		T0-T15	Vod = Vdd - 2	V	-15	-22		mA
On-chip pull-down resistor	RL	Display outputs	Vod - Vload =	35 V	25	70	135	kΩ
Note 1	I _{DD1}	6.0 MHz crystal	V _{DD} = 5 V ± 10	0 % Note 2		6.5	18.0	mA
Power supply current		oscillator	V _{DD} = 3 V ± 10	0 % Note 3		0.85	2.5	mA
	I _{DD2}		HALT mode	V _{DD} = 5 V ± 10 %		1350	4000	μΑ
				V _{DD} = 3 V ± 10 %		450	1350	μΑ
	I _{DD1}	4.19 MHz crystal	V _{DD} = 5 V ± 10	0 % Note 2		4.0	12.0	mA
		oscillator	V _{DD} = 3 V ± 10	0 % Note 3		0.55	1.5	mA
	I _{DD2}	C1 = C2 = 15 pF	HALT mode	V _{DD} = 5 V ± 10 %		900	2700	μΑ
				V _{DD} = 3 V ± 10 %		300	900	μΑ
	Пррз	Note 4	V _{DD} = 3 V ± 10	0 %		100	300	μΑ
	I _{DD4}	32kHz crystal	HALT mode	V _{DD} = 3 V ± 10 %		20	60	μΑ
		oscillator	STOP mode	V _{DD} = 3 V ± 10 %		5	15	μΑ
	I _{DD5}	XT1 = 0 V	V _{DD} = 5 V ± 10	0 %		0.5	20	μΑ
		STOP mode	V _{DD} = 3 V ± 10	0 %		0.1	10	μΑ

Notes 1. Does not include pull-down resistor current.

- 2. Value during high-speed operation and when the processor clock control (PCC) register is set to 0011.
- 3. Value during low-speed operation and when the PCC register is set to 0000.
- **4.** Value when the system clock control register (SCC) is set to 1001, generation of the main system clock pulse is stopped, and the CPU is operated by the subsystem clock pulse.

AC Characteristics (Ta = -40 to +70 $^{\circ}\text{C}, \text{ V }_{\text{DD}}$ = 2.7 to 6.0 V)

Parameter	Symbol	Cor	nditions		MIN.	TYP.	MAX.	Unit
Note 1	tcy	Main system	V _{DD} = 4.5	to 6.0 V	0.67		32	μs
CPU clock cycle time		clock			2.6		32	μs
(minimum instruction execu- tion time = 1 machine cycle)		Subsystem clock			114	122	125	μs
TIO input frequency	f⊤ı	$V_{DD} = 4.5 \text{ to } 6.0$	V		0		0.6	MHz
					0		165	kHz
TI0 input low- and high-level	tтıн,	$V_{DD} = 4.5 \text{ to } 6.0$	V		0.83			μs
width	t TIL				3			μs
SCK cycle time	tĸcy	$V_{DD} = 4.5 \text{ to } 6.0$	V	Input	0.8			μs
				Output	0.95			μs
				Input	3.2			μs
				Output	3.8			μs
SCK low- and high-level width	tкн,	$V_{DD} = 4.5 \text{ to } 6.0$	V	Input	0.4			μs
	tĸL			Output	tксу/2-50			ns
				Input	1.6			μs
				Output	tксу/2-150			ns
SI setup time (to SCK ↑)	tsıĸ				100			ns
SI hold time (from SCK ↑)	t ksı				400			ns
$\overline{SCK} \downarrow \to SO$ output delay	tĸso	$V_{DD} = 4.5 \text{ to } 6.0$	V				300	ns
time							1000	ns
Interrupt inputs	tinth,			INT0	Note 2			μs
low- and high-level width	tintl			INT1	2tcy			μs
				INT2,4	10			μs
RESET low-level width	trsl			-	10			μs

- Notes 1. The CPU clock (Φ) cycle time is determined by the oscillator frequency of the connected resonator, the system clock control register (SCC), and the processor clock control register (PCC).
 - The right chart shows the cycle time tcy characteristics for power supply voltage VDD during the main system clock operation.
 - 2. 2tcy or 128/fxx, depending on the setting of the interrupt mode register (IM0).

AC Timing Test Points (Except X1, XT1)

Clock Timing

TI0 Timing

Serial Transfer Timing

Interrupt Input Timing

RESET Input Timing

Data Memory STOP Mode Low Voltage Data Retention Characteristics ($T_a = -40 \text{ to } +70 \text{ }^{\circ}\text{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR		2.0		6.0	٧
Data retention current Note 1	IDDDR	VDDDR = 2.0 V		0.1	10	μΑ
Release signal SET time	t srel		0			μs
Oscillation stabilization time Note 2	twait	Release by RESET input		2 ¹⁷ /f _x		ms
		Release by interrupt request		Note 3		ms

- Notes 1. Does not include pull-down resistor current.
 - 2. The oscillation stabilization WAIT time is the time during which the CPU operation is stopped to prevent unstable operation while the oscillation is started.
 - 3. The WAIT time depends on the setting of the basic interval timer mode register (BTM) according to the following table.

DTMO	DTMO	DTM4	DTMO	WAIT	time
BTM3	BTM2	BTM1	BTM0	(fxx = 6.0 MHz)	(fxx = 4.19 MHz)
-	0	0	0	2 ²⁰ /fxx (approx. 175 ms)	2 ²⁰ /fxx (approx. 250 ms)
-	0	1	1	2 ¹⁷ /fxx (approx. 21.8 ms)	2 ¹⁷ /fxx (approx. 31.3 ms)
_	1	0	1	2 ¹⁵ /fxx (approx. 5.46 ms)	2 ¹⁵ /fxx (approx. 7.82 ms)
_	1	1	1	2 ¹³ /fxx (approx. 1.37 ms)	2 ¹³ /fxx (approx. 1.95 ms)

Data Retention Timing (STOP mode is released by RESET input)

Data Retention Timing (STOP mode is released by interrupt signal)

DC Programming Characteristics (Ta = 25 ± 5 °C, V DD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	V _{IH1}	All except X1, X2	0.7V _{DD}		V _{DD}	V
	V _{IH2}	X1, X2	V _{DD} - 0.5		V _{DD}	V
Low-level input voltage	V _{IL1}	All except X1, X2	0		0.3V _{DD}	V
	V _{IL2}	X1, X2	0		0.4	V
Input leakage current	lu	VIN = VIL OR VIH			10	μΑ
High-level output voltage	Vон	Iон = −1 mA	V _{DD} - 1.0			V
Low-level output voltage	Vol	IoL = 1.6 mA			0.4	V
V _{DD} power supply current	IDD				30	mA
V _{PP} power supply current	IPP	MD0 = VIL, MD1 = VIH			30	mA

Cautions 1. VPP must not exceed +13.5 V, including overshoot.

2. \mbox{VdD} is to be applied prior to \mbox{VPP} and to be removed after \mbox{VPP} is removed.

AC Programming Characteristics (T_a = 25 \pm 5 $^{\circ}$ C, V_{DD} = 6.0 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V, V_{SS} = 0 V)

Parameter	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time Note 2 (to MD0 ↓)	tas	tas		2			μs
MD1 setup time (to MD0 ↓)	Тм1ѕ	toes		2			μs
Data setup time (to MD0 \downarrow)	tos	tos		2			μs
Address hold time Note 2 (from MD0 ↑)	Тан	tан		2			μs
Data hold time (from MD0 ↑)	tон	tон		2			μs
MD0 \uparrow \rightarrow data output float delay time	t DF	t DF		0		130	ns
V _{PP} setup time (to MD3 ↑)	tvps	tvps		2			μs
V _{DD} setup time (to MD3 ↑)	tvos	tvcs		2			μs
Initialized program pulse width	tpw	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1 ↑)	tмos	tces		2			μs
MD0 \downarrow \rightarrow data output delay time	tov	tov	MD0 = MD1 = VIL			1	μs
MD1 hold time (to MD0 ↑)	t м1н	t oeh	$t_{\text{M1H}} + t_{\text{M1R}} \ge 50 \ \mu\text{s}$	2			μs
MD1 recovery time (from MD0 \downarrow)	t _{M1R}	tor		2			μs
Program counter reset time	tpcr	-		10			μs
X1 input low- and high-level width	txH, txL	_		0.125			μs
X1 input frequency	fx	_				4.19	MHz
Initial mode set time	tı	-		2			μs
MD3 setup time (to MD1 ↑)	tмзs	_		2			μs
MD3 hold time (from MD1 \downarrow)	tмзн	-		2			μs
MD3 setup time (to MD0 \downarrow)	tмзsr	-	During program read cycle	2			μs
Address Note 2 \rightarrow Data output delay time	t DAD	t ACC	During program read cycle	2			μs
Address Note 2 \rightarrow Data output hold time	t HAD	tон	During program read cycle	0		130	ns
MD3 hold time (from MD0 ↑)	tмзнк	-	During program read cycle	2			μs
MD3 \downarrow \rightarrow Data output float delay time	tdfr	_	During program read cycle	2			μs

Notes 1. These symbols correspond to those of the $\mu PD27C256A$.

2. The internal address signal is incremented by the rising edge of the fourth X1 pulse; it is not connected to an external pin.

Program Memory Write Timing

Program Memory Read Timing

6. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 ^{+0.10} _{-0.05}	0.010+0.004
N	0.17	0.007
R	0~15°	0~15°

P64C-70-750A,C-1

64 PIN PLASTIC QFP (14×20)

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

P64GF-100-3B8,3BE,3BR-1

ITEM	MILLIMETERS	INCHES
А	23.6±0.4	0.929±0.016
В	20.0±0.2	0.795 ^{+0.009} _{-0.008}
С	14.0±0.2	0.551+0.009
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.40±0.10	0.016+0.004
1	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	1.8±0.2	0.071+0.008
L	0.8±0.2	0.031+0.009
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.12	0.005
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

64 PIN CERAMIC WQFN

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

X64KW-100A-2

ITEM	MILLIMETERS	INCHES
А	20.0±0.4	0.787 ^{+0.017} _{-0.016}
В	19.0	0.748
С	13.2	0.520
D	14.0±0.4	0.551±0.016
E	1.64	0.065
F	2.14	0.084
G	3.556 MAX.	0.140 MAX.
Н	0.7±0.10	0.028+0.004
I	0.10	0.004
J	1.0 (T.P.)	0.039 (T.P.)
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
Q	C 0.25	C 0.010
R	1.0	0.039
S	1.0	0.039
Т	R 3.0	R 0.118
U	12.0	0.472
W	0.8±0.2	0.031+0.009

7. RECOMMENDED SOLDERING CONDITIONS

The following conditions (See table below) must be met when soldering this product.

Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

TYPE OF SURFACE MOUNT DEVICE

μ PD75P218GF-3BR

Soldering Process	Soldering Conditions	Symbol
Wave Soldering	Solder temperature: 260 °C or lower, Flow time: 10 seconds or less, Exposure limit Note: 7 days (10 hour pre-baking is required at 125 °C afterwards) Number of flow processes: 1	WS60-107-1
Infrared Ray Reflow	Peak temperature of package surface: 230 °C or lower Reflow time: 30 seconds or less (210 °C or higher), Number of reflow processes: 1 Exposure limit Note: 7 days (10 hour pre-baking is required at 125 °C afterwards)	IR30-107-1
VPS	Peak temperature of package surface: 215 °C or lower Reflow time: 40 seconds or less (200 °C or higher), Number of reflow processes: 1 Exposure limit Note: 7 days (10 hour pre-baking is required at 125 °C afterwards)	VP15-107-1
Partial Heating Method	Pin temperature: 300 °C or lower, Time: 3 seconds or less (Per side of the package)	-

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".

TYPE OF THROUGH HOLE DEVICE

μ PD75P218CW

Soldering Process	Soldering Conditions
Wave Soldering (only lead part)	Solder temperature: 260 °C or lower, Flow time: 10 seconds or less
Partial Heating Method	Pin temperature: 260 °C or lower, Time: 10 seconds or less

Caution This wave soldering should be applied only to lead part, and do not jet molten solder on the surface of package.

APPENDIX DEVELOPMENT TOOLS

The following development tools are provided for the development of a system which employs the $\mu PD75P218$.

Language processor

RA75X relocatable assembler	This program converts symbolic source code for the µPD75000 series of			
	microcomputers into executable absolute address object code.			
	There are also functions such as generating a symbol table and optimizing			
	branch instructio			
	Host machine			Part number
	Trost macmine	os	Distribution media	Tart number
	PC-9800 series	MS-DOS™	3.5-inch 2HD	μS5A13RA75X
		/ Ver. 3.10 \		
		to Ver. 3.30C	5-inch 2HD	μS5A10RA75X
	IBM PC series	PC DOS™ (Ver. 3.1)	5-inch 2HC	μS7B10RA75X

PROM programming tools

Hardware	PG-1500	The PG-1500 PROM programmer is used together with an accessory board and optional program adapter. It allows the user to program a single chip microcomputer containing PROM and typical 256K-bit to 1M-bit PROMs				
		from a keyboard	ol.			
	PA-75P216ACW	PROM programmer adapter dedicated to μ PD75P218CW.				
		Connect the programmer adapter to PG-1500 for use.				
	PA-75P218GF	PROM programmer adapter dedicated to μ PD75P218GF.				
		Connect the programmer adapter to PG-1500 for use.				
	PA-75P218KB	PROM programmer adapter dedicated to μPD75P218KB.				
		Connect the programmer adapter to PG-1500 for use.				
Software	PG-1500 controller	This program enables the host machine to control the PG-1500 through the serial and parallel interfaces.				
				D		
		Host machine	os	Distribution media	- Part number	
		PC-9800 series	MS-DOS / Ver. 3.10 \	3.5-inch 2HD	μS5A13PG1500	
			to Ver. 3.30C	5-inch 2HD	μS5A10PG1500	
		IBM PC series	PC DOS (Ver. 3.1)	5-inch 2HC	μS7B10PG1500	

Debugging tools

Hardware	IE-75000-R Note 1	The IE-75000-R is an in-circuit emulator available for the 75X series. This emulator is used together with the emulation probe to develop application systems of the μ PD75P218. For efficient debugging, the emulator is connected to the host machine and PROM programmer.				
	IE-75000-R-EM Note 2	The IE-75000-R-EM is an emulation board for the IE-75000-R and IE-75001-R. The IE-75000-R contains the emulation board. The emulation board is used together with the IE-75000-R or IE75001-R to evaluate the μ PD75P218.				
	IE-75001-R	The IE-75001-R is an in-circuit emulator available for the 75X series. This emulator is used together with the IE-75000-R-EM ^{Note 2} emulation board and emulation probe to develop application systems of the μ PD75P218. For efficient debugging, the emulator is connected to the host machine and PROM programmer.				
	EP-75216ACW-R		for the μ PD75P218 be to the IE-75000-	BCW. R or IE-75001-R for use		
	EP-75216AGF-R	Emulation probe for the μPD75P218GF. Connect this probe to the IE-75000-R or IE-75001-R for use. A 64-pin conversion socket, the EV-9200G-64, attached to the probe facilitates the connection of the probe with the user system.				
Software	IE control program	This program enables the host machine to control the IE-75000-R or IE-75001-R on the host machine through the RS-232-C interface.				
		Host machine OS Distribution media			Part number	
		PC-9800 series	MS-DOS / Ver. 3.10 \	3.5-inch 2HD	μS5A13IE75X	
			to Ver. 3.30C	5-inch 2HD	μS5A10IE75X	
		IBM PC series	PC DOS (Ver. 3.1)	5-inch 2HC	μS7B10IE75X	

Notes 1. Provided only for maintenance purposes.

2. The IE-75000-R-EM is an option.

Remark NEC is not responsible for the operation of the IE control program and assembler unless it runs on any host machine with the operation system listed above.

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an antistatic container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

NEC μ PD75P218

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6

 \mbox{FIP}^{\circledR} is a trademark of NEC Corporation. MS-DOS^{TM} is a trademark of Microsoft Corporation. PC DOS^{TM} is a trademark of IBM Corporation.