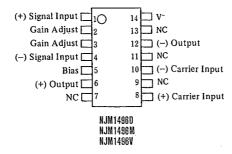
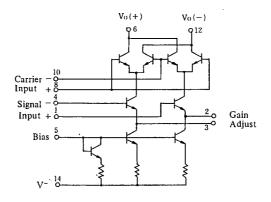


■ GENERAL DESCRIPTION

The NJM1496 is a double balanced modulator-demodulator which produces an output voltage proportional to the product of an input (signal) voltage and a switching (carrier) signal. Typical applications include suppressed carrier modulation, amplitude modulation, synchronous detection, FM or PM detection, broadband frequency doubling and chopping.


■ FEATURES

- Excellent carrier suppression 65dB typical at 0.5MHz 50 dB typical at 10MHz
- Adjustable gain and signal handling
- Fully balanced inputs and outputs
- High Common Mode Rejection 85dB Typ.
- Package Outline DIP14, DMP14, SSOP14
- Bipolar Technology


APPLICATION

- Balanced Modulation
- Synchronous Detection
- FM Detection
- Phase Detection
- Sampling

■ PIN CONFIGURATION

■ EQUIVALENT CIRCUIT

■ PACKAGE OUTLINE

NJM1496D

NJM1496M

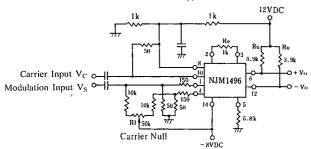
NJM1496V

ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

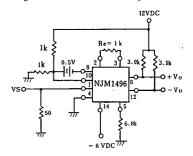
PARAMETER	RATINGS	UNIT	
Applied Voltage	30(Applied Pins 6-8, 12-8, 6-10, 12-10, 10-1, 8-1, 10-4, 8-4, 2-5, 3-5)	V	
Carrier Input Voltage	±5(Applied Pins 8-10)	V	
Signal Input Voltage	$\pm (5 + I_{s}$, Re) (Applied Pins 1-4)	V	
Input Signal	5	٧	
Bias Current (Is)	10	mA	
Power Dissipation	(DIP14) 570	mW	
	(DMP14) 300	mW	
	(SSOP14) 300	mW	
Operating Temperature Range	-20~+75	°C	
Storage Temperature Range	-40~+125	\mathbb{C}	

■ **ELECTRICAL CHARACTERISTICS** DC Characteristics ($V^+=12V$, $V^-=-8V$, $I_5=1.0$ mA, $R_L=3.9$ k Ω , Re=1.0k Ω , Ta=25°C)

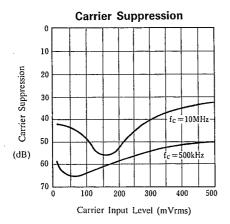

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Single-Ended Input Impedance				1		
Parallel Input Resistance	Rip	Signal Port, f=5.0MHz	_	200	_	kΩ
Parallel Input Capacitance	Cip	Signal Port, f=5.0MHz	—	2.0	-	pF
Single-Ended Output Impedance						
Parallel Output Resistance	Rop	f=10MHz	_	40		kΩ
Parallel Output Capacitance	Cop	f=10MHz	-	5.0		pF
Input Bias Current						
$I_{bs} = I_1 + I_4/2$	I _{bs}	•	_	12	30	. μΑ
$I_{bc} = I_8 + I_{10}/2$	Ibe		-	12	30	μΑ
Input Offset Current						
$I_{ios} = I_1 - I_4$	I_{ios}		-	0,7	7	μΑ
$I_{ioc} = I_8 - I_{10}$	line		_	0.7	7	μΑ
Average Temperature Coefficient of Input Offset Current	ΔI _{io}		_	2.0	_	nA/°C
Output Offset Current (I_6-I_{12})	Ioc		-	15	80	μΑ
Average Temperature Coefficient of Output Offset Current	ΔI _{oc}		_	90	_	nA/°C
Output Voltage	V _o		_	8.0	-	V
Operating Current						
$(I_6 + I_{12})$	I _{D+}		-	2.0	4.0	mA
I ₁₄	I _D		_	3.0	5.0	mA
DC Power Dissipation	P _D		-	33	-	mW

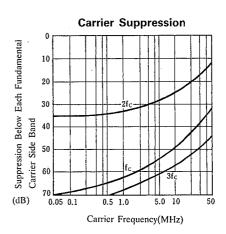
■ ELECTRICAL CHARACTERISTICS AC Characteristics (V*=12V, V*=−8V, I₅=1.0mA, R_L=2.9kΩ, Re=1.0kΩ, Ta=25°C)

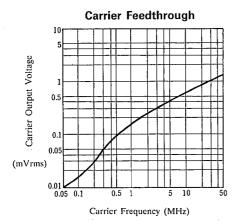
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	мах.	UNIT
Carrier Feedthrough		Vc= 60mVrms sine wave				
		offset adjusted				
	V _{CFT}	fc=1.0kHz		40		μVrms
	VCFT	fc=10MHz	-	140	-	μVrms
		Vc= 300mVp-p square wave				
		fc=1.0kHz				
	V _{CFT}	offset adjusted	_	0.04	0.4	mVrms
	V _{CFT}	offset not adjusted	-	20	200	m∨rms
Carrier Suppression		fs = 10kHz, 300mVrms sine wave	+			
		offset adjusted				
	V_{CS}	fc = 500kHz, 60mVrms sine wave	40	65	-	đВ
	V _{CS}	fc = 10MHz, 60mVrms sine wave	-	5.0	·	dB
Transadmittance Bandwidth						
$(R_L = 50\Omega)$		Vc= 60mVrms sine wave				
Carrier Input Port	BW 3dB	fs = 1.0kHz, 300mVrms sine wave	_	300	-	MHz
Signal Input Port	BW 3dB	Vs = 300mVrms sine wave		80		MHz
		Ve =6 5Vde				
Voltage Gain, Signal Channel		Vs = 100mVrms fs=1.0kHz		1		
	AVs	Ve =0.5Vde	2.5	3.5	-	V/V
Signal Port Common Mode Input Voltage						
Range	CM _V	fs = 1.0kHz	_	5.0	-	Vp-p
Signal Port Common Mode Rejection Ratio	ACM	fs = 1.0kHz, Vc = 0.5Vdc		-85	_	dB
Differential Output Swing Capability	DVout		_	8.0	-	Vp-p

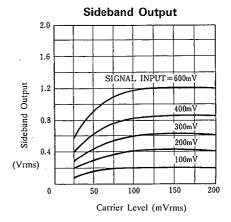

■ TEST CIRCUIT

- Carrier feedthrough
- Carrier Suppression

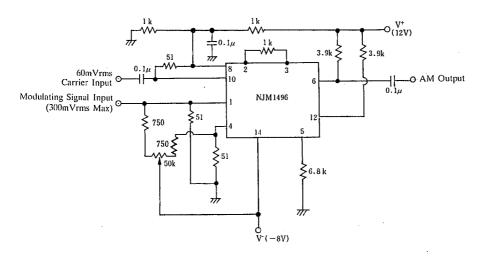

Connect a $100\mu F$ capacitor and a 3000 pF capacitor in parallel to each other, if the capacitance is not specified.

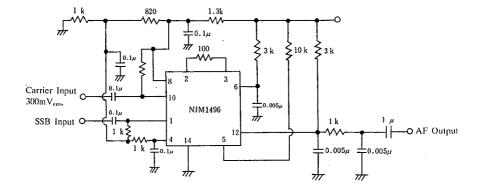

- Differential Output Swing Capability
- Signal Port Common Mode Rejection Ratio




4

■ TYPICAL CHARACTERISTICS





■ TYPICAL APPLICATIONS

AM Modulator Circuit

Product Detector (+12V DC Single Supply)

NJM1496

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.