J-FET INPUT OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

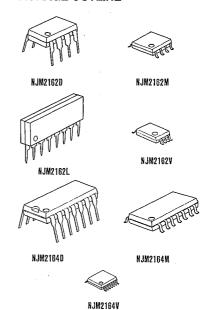
The NJM2162/64 combines feature of the NJM062/064 as well as and providing the capability of wider bandwidth and higher slew rate. It is suitable for telecom application (active filters etc.).

■ FEATURES

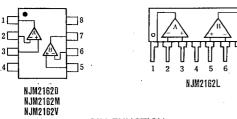
• Operating Voltage $(\pm 2V \sim \pm 18V)$ • High Input Resistance $(10^{12}\Omega \text{ typ.})$ • Low Operating Current (1.2mA typ.)• High Slew Rate $(10V/\mu \text{s typ.})$

J-FET Input

Wide Unity Gain Bandwidth


Bipolar Technology

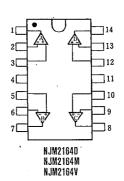
Package Outline


DIP8/14, DMP8/14, SIP8, SSOP8/14

(3MHz typ.)

■ PACKAGE OUTLINE

■ PIN CONFIGURATION


PIN FUNCTION

1 . A OUTPUT 5 . B+INPUT

2 . A-INPUT 6 . B-INPUT

3 . A+INPUT 7 . B OUTPUT

4 . V
8 . V+

PIN FUNCTION

1. A OUTPUT

2. A—INPUT

3. A+INPUT

4. V*

5. B+INPUT

6. B—INPUT

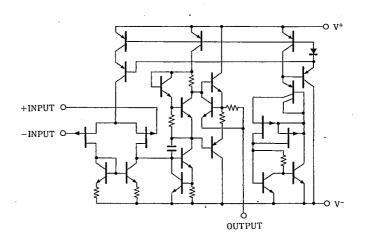
7. B OUTPUT

8. C OUTPUT

9. C—INPUT

10. C+INPUT

11. V*


12. D+INPUT

13. D—INPUT

14. D OUTPUT

■ EQUIVALENT CIRCUIT

(2162 is 1/2 Shown, 2164 is 1/4 Shown)

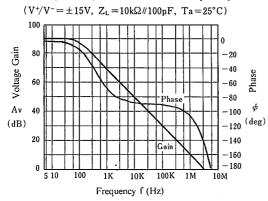
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

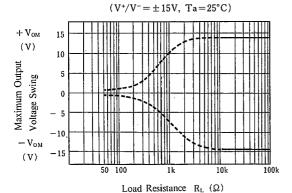
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*/V*	±18	V	
Differential Input Voltage	V _{ID}	±30	V	
Input Voltage	V _{IC}	±15 (note 1)	V	
Power Dissipation .		(DIP8) 500	mW	
		(DMP) 300	mW	
		(SIP8) 800	mW	
	PD	(SSOP8) 250	mW	
		(DIP14) 700	mW	
		(DMP14) 700 (note2)	mW	
		(SSOP14) 300	mW	
Operating Temperature Range	Topr	−20~+75		
Storage Temperature Range	Tstg	-40~+125		

(note 1) For supply voltage less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage, (note 2) at on PC board

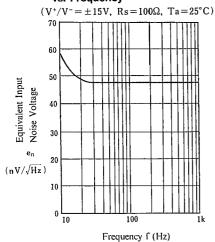
■ ELECTRICAL CHARACTERISTICS

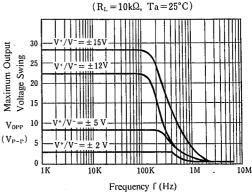

 $(V^{+}/V^{-}=\pm 15V, Ta=25^{\circ}C)$

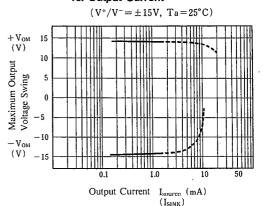
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+/V-		±2	_	±18	V
Input Offset Voltage	Vio	$R_s = 50\Omega$	_	5	15	mV
Input Offset Current	I _{IO}		_	1	200	pΑ
Input Bias Current	IB		'	2	400	pA
Input Common Mode voltage Range	VICM		±13	+15	_	v
			1	-13.5		
Maximum Output Voltage Swing	Vом	$R_{L} = 10\Omega$	±13	+14	<u> </u>	l v
			ļ	-14.0		
Large signal Voltage Gain	Av	$R_L \ge 10k\Omega$, $V_0 = \pm 10V$	70	80		dB
Unity Gain Bandwidth	fr	$R_L = 10\Omega$	l —	3	<u> </u>	MHz
Input Resistance	Rin		l —	1012		Ω
Common Mode Rejection Ratio	CMR	$R_S \leq 10k\Omega$	70	90	-	dB
Supply voltage Rejection Ratio	SVR	$R_{S} \leq 10k\Omega$.70	100		dB
Operating Current	Icc	R _L =∞ (1 circuit)		0.3	0.45	mA
Slew Rate	SR	$R_L = 10k\Omega$	-	10	_	V/μs
Equivalent Input Noise Voltage	en	$_{i}$ RS=100 Ω , f=1kHz	_	40	-	nv√Hz

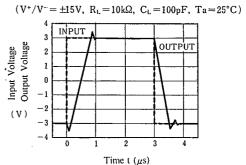

(Note) The NJM 2162/64 is the produc in which the AC feature have been made much higher comparing to NJM062/64. Therefore special care being required for the oscillation due to the capacitive load when operation on voltage follower.

■ TYPICAL CHARACTERISTICS

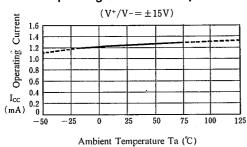

Voltage Gain, Phase Shift vs. Frequency


Maximum Output Voltage Swing vs. Load Resistance

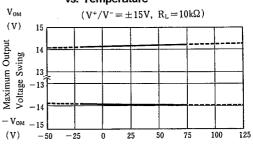

Equivalent Input Noise Voltage vs. Frequency


Maximum Output Voltage Swing vs. Frequency

Maximum Output Voltage Swing vs. Output Current

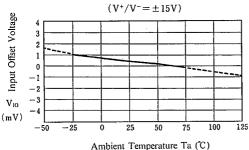


Voltage Follower Large Signal Pulse Response

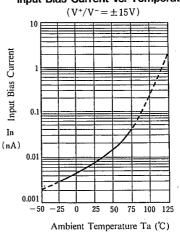


■ TYPICAL CHARACTERISTICS

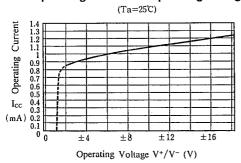
Operating Current vs. Temperature

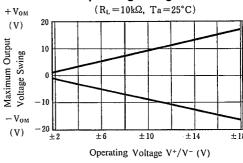


Maximum Output Voltage Swing vs. Temperature



Ambient Temperature Ta (℃)


Input offset Voltage vs. Temperature


Input Bias Current vs. Temperature

Operating Current vs. Operating Voltage

Maximum Output Voltage Swing vs. Operating Voltage

NJM2162/2164

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.