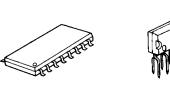
SYNCHRONOUS SEPARATION WITH AFC

GENERAL DESCRIPTION

The NJM2229 has functions of getting the horizontal and vertical synchronous signal from the composit video signal by the synchronous separation circuit. Also the NJM2229 has a detective terminal of the input signal through the synchronous circuit.

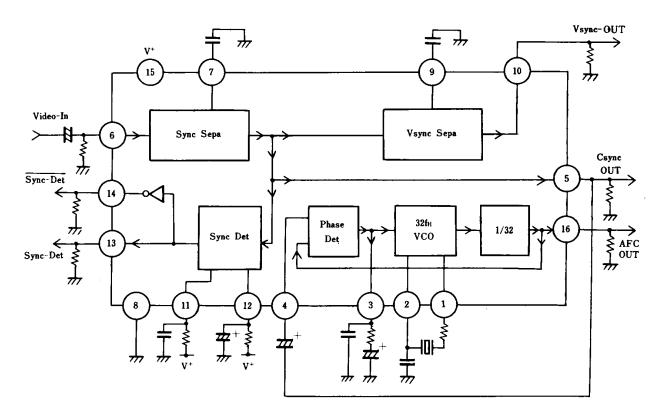
FEATURES


- (+4.7V~+5.3V) Operating Voltage •
- Internal AFC circuit (Horizontal sync. signal) .
- No adjustment of free run frequency. •
- Internal detective circuit of sync. signal. DIP16, ZIP16
- Package Outline .
- Bipolar Technology

RECOMMENDED OPERATING CONDITION

Operating Voltage 4.7~5.3V •

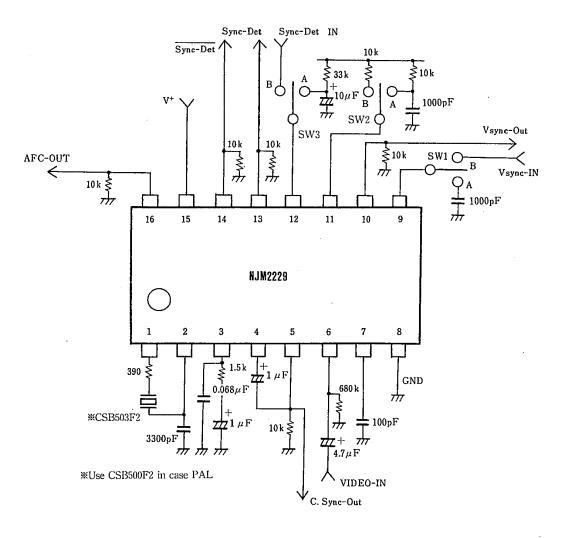
BLOCK DIAGRAM



NJM2229M

NJM2229S

JRC


ABSOLUTE MAXIMUM RAT	(Ta=25℃)		
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	7	V
Power Dissipation	Рр	500	mW
Operating Temperature Range	Topr	-20~+75	Ĉ
Storage Temperature Range	Tstg	-40~+125	Ĉ

(Ta=25℃, V⁺=5V)

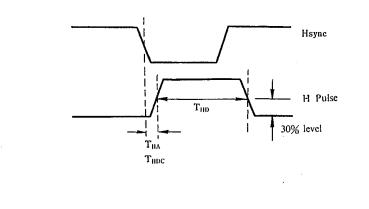
ELECTRICAL CHARACTERISTICS

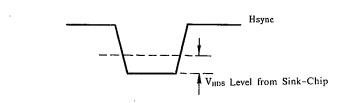
PARAMETER	SYMBOL	MIN.	ТҮР.	MAX.	UNIT
Operating Current	lcc	_	20	26	mA
AFC Free-run Frequency	for	15.534	15.734	15.934	kHz
AFC Pulse Width	T _{HD}	3.7	3.9	4.1	μs
AFC Delay	THA	. 0.7	1.7	2.7	μs
AFC Lock Range	Δſ _{HL}	+600 900	+ 700 - 1000		Hz
AFC Capture Range	∆f _{HP}	+ 400 700	+600 -900		Hz
AFC Output Voltage High	V _{HAH} .	4.0	4.2	·	v
AFC Output Voltage Low	VHAL		0	0.1	v
Sync. Signal Detection Level	V _{HDS}	0.11	0.14	0.17	V
Sync. Signal Detection Delay Time	THDC	0	0.57	1.5	μs
Sync. Signal Detection Output Voltage High	V _{HDH}	4.0	4.2	—	v
Sync. Signal Detection Output Voltage Low	VHDL	—	· 0	0.1	v
VSYNC Threshold Voltage High	V _{DSH}	2.4	2.5	2.6	v
VSYNC Threshold Voltage Low	VDSL	1.4	1.5	1.6	V.
V _{SYNC} Output Voltage High	V _{DII}	4.0	4.2	—	V
VSYNC Output Voltage Low	VDL	—	0	0.1	v
V _{SYNC} Pulse Width	TvD	212	272	332	μs
V _{SYNC} Delay Time	T _{VDT}	9.6	12.3	15	μs
Sync. Detection Lock Voltage High	VLH	2.53	2.68	2.83	v
Sync. Detection Lock Voltage Low	VLL	1.25	1.40	1.55	v
Sync. Detection Capture High	V _{CH}	2.07	2.22	2.37	V
Sync. Detection Capture Low	VCL	1.57	1.72	1.87	V .
Sync. Detection Output Voltage High	VDEH	4.0	4.2		V
Sync. Detection Output Voltage Low	VDEL		0	0.1	v
Sync. Detection Output Voltage High	VDEH	4.0	4.2	-	V
Sync. Detection Output Voltage Low	VDEL	-	0	0.1	V

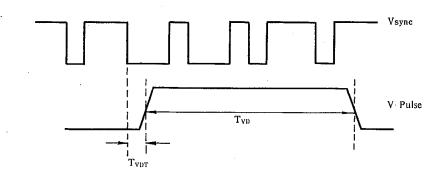
TEST CIRCUIT

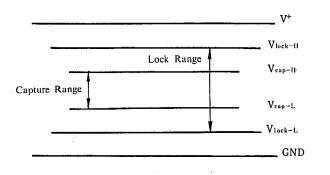
-New Japan Radio Co.,Ltd.-

5


ELECTRICAL PARAMETER TEST METHOD


Test Circuit:


PARAMETERS	SW-1	SW-2	SW-3	TEST CONDITION
Operating Current	A	A	A	No input signal. DC current at Pin15.
AFC Free-run Frequency	A	A	A	No input signal. Video-IN terminal to GND. Frequency at Pin16.
AFC Pulse Width	A	A	A	No input signal. Output Pulse width at pin16. (Note 1)
AFC Output Delay Time	A	A	A	Input 2V _{P-P} video signal on Video-IN terminal. Delay time between input and AFC output signal. (Note 1)
AFC Lock Range	A	A	A	Operating ferquency range of AFC output when the input pulse signal frequency with 5 μ sec pulse width at Video-IN terminal changes.
AFC Capture Range	A	A	A	Frequency range when signal changes from AFC unlock condition to lock.
AFC Output Voltage	A	A	A	Output voltage at Pin16 in condition of load resistance $R_L = 10k\Omega$.
Sync. Signal Detection Level	A	A	A	Putting $2V_{P,P}$ video signal on Video-1N terminal and reduc- ing it to the level that pin5 output waveform is beginning to change. V _{HDS} is the sink-chip level at that point. (Note 2)
Sync. Signal Detection Output Voltage	A	A	А	Output voltage at Pin5 with load resistance $R_L = 10k\Omega$.
Sync. Signal Detection Delay Time	A	A	А	2V _{P-P} video signal at Video-IN terminal. Time difference between input(Pin5) and output(Pin6) waveform.
V _{SYNC} Threshold Voltage High	В	А	A	Gradually increase DC voltage from 2V to 3V at V _{SYNC} -IN terminal. DC input voltage when output voltage at Pin10 changes from LOW to HIGH state.
VSYNC Threshold Voltage Low	В	A	A	Gradually decrease DC voltage from 3V to 1V at V_{SYNC} -IN terminal. DC input voltage when output voltage at Pin10 changes from HIGH to LOW state.
V _{SYNC} Output Voltage	B	A	A	Output voltage at Pin10 with load resistance $R_L = 10k\Omega$.
V _{SYNC} Pulse Width	A	A	А	Putting 2V _{P-P} video signal on Video-IN terminal and measurring output pulse width at Pin10. (Note 3)
V _{SYNC} Delay Time	A	A	А	Putting 2V _{P-P} video signal on Video-IN terminal. Delay time between output at Pin10 and V _{SYNC} at Pin6. (Note 3)
Sync. Detection Lock Voltage High	A	В	В	Increase DC voltage from 2V to 4V put on Sync-Det-IN terminal and measure its DC voltage when output voltage at Pin13 changes from HIGH to LOW. (Note 4)
Sync. Detection Lock Voltage Low	A	В	В٠	Decrease DC voltage from 2V to 1V put on Sync-Det-IN terminal and measure its DC voltage when output voltage at Pin13 changes from HIGH to LOW. (Note 4)
Sync. Detection Capture High	A	В	В	Decrease DC voltage from 3V to 1V put on Sync-Det-IN terminal and measure its DC voltage when output voltage at Pin13 changes from LOW to HIGH. (Note 4)
Sync. Detection Capture Low	A	В	В	Increase DC voltage from 1V to 2V put on Sync-Det-IN terminal and measure its DC voltage when output voltage at Pin13 changes from LOW to HIGH. (Note 4)
Sync. Detection Output Voltage	A	В	В	Output voltage at Pin13 with load resistance $R_L = 10k\Omega$.
Sync. Detection Output Voltage	A	В	В	Output voltage at Pin14 with load resistance $R_L = 10k\Omega$.


5-116----

NJM2229

5

5-117

PIN FUNCTION

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	VCO-OUT	Putting VCO output on ceramic resonator.	1 1 1.5 mA
2	VCO-FILTER	Deciding phase of ceramic resonator.	200 2
3	AFC-FILTER	Low pass filter of AFC.	+ 100 μA
4	AFC-IN	Input terminal of AFC. Putting composite. synchronous signal on it.	(4) 20 k 777 777
5	C. SYNC-OUT	Sync. signal Detection output	100 × 5 15 k × 777

5

NJM2229

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT
6	VIDEO-IN	Input composite video signal.	б 100 ↓ 300 µА
7	L. P. F	Low pass filter for chroma signal.	4 k 4 k
8	GND	Ground.	
9	SYNC-INTEGR	Integrating composite synchronous signal and putting vertical synchronous reproducing circuit.	
10	VSYNC-OUT	Vertical synchronous output.	100 100 100 15k 777

-New Japan Radio Co.,Ltd.

E

NJM2229

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT
11	M. M-TC	Deciding time constant of M. M. V. (monomulti vibrator)	
12	M. M-INTER	Smoothing M. M. V. output.	10 μ A 10 k 200 12 777 777
13	SYNCDET-OUT	Signal detective output.	100 3 100 3 15k 777
14	SYNCDET-OUT	Inversed output of Pin 13.	100 100 14 15k 777
15	V+	Power supply.	
16	AFC-OUT	AFC output.	100 ¥ 16 15k ¥ 777

-New Japan Radio Co.,Ltd.-

5-120-

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.