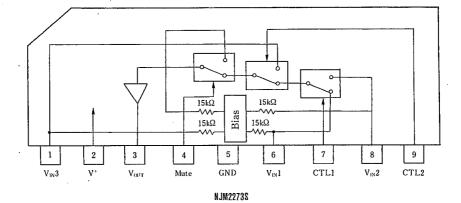
3-INPUT 1MUTE VIDEO SWITCH

■ GENERAL DESCRIPTION

NJM2273 is a switching IC for switching over from one audio or video input signal to another. Internalizing the mute function which can be operated by 3 inputs. It is a higher performance video switch, with the operating supply voltage 4.75 to 13V, frequency bandwidth 7MHz, crosstalk 75dB (at 4.43MHz).


■ FEATURES

- 3 Input, 1 Output
- Internalizing Mute Function
- Operating Voltage (4.75~13.0V)
- Crosstalk 75 dB(at 4.43MHz)
- Wide Bandwidth Frequency 7MHz(2V_{P-P} Input)
- Package Outline SIP9
- Bipolar Technology

■ APPLICATIONS

• VCR, Video Camera, AV-TV, Video Disk Player.

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM2273S

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	14	V
Power Dissipation	PD	(SIP9) 500	mW
Operating Temperature Range	Topr	-40~+85	C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	Icci	V+=5V (Notel)	4.5	6.5	8.5	mA
Operating Current (2)	I _{CC2}	V+=9V (Notel)	5.8	8.3	10.8	mA
Voltage Gain	Gv	$V_1 = 100 \text{kHz}, 2V_{P-P}, V_O / V_1$	-0.7	-0.2	+0.3	dB
Frequency Gain (1)	GFI	$V_1 = 2V_{P-P}, V_O(7MHz)/V_O(100kHz)$	-1.0	0	+1.0	dB
Frequency Gain (2)	G _{F2}	$V_1 = 1V_{P-P}, V_O(10MHz)/V_O(100kHz)$	—	0		dB
Differential Gain	DG.	V ₁ =2V _{P-P} , Standard Staircase Signal		0.3	-	%
Differential Phasa	DP	V ₁ =2V _{P-P} , Standard Staircase Signal	<u></u>	0.3	—	deg
Output offset Voltage	Vos	(Note2)	-30	0	+30	mV
Crosstalk	CT	$V_1 = 2V_{P-P}, 4.43MHz, V_O/V_1$		-75	—	dB
Muting Crosstalk	C _{TM}	$V_1 = 2V_{P-P}, 4.43MHz, V_O/V_I$	l —	60	—	dB
Switch Change Over Voltage	V _{CH}	All inside switch ON	2.5			ν
Switch Change Over Voltage	VCL	All inside switch OFF	<u> </u>		1.0	V

(Notel) S1=S2=S3=S4=S5=S6=I

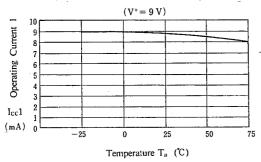
(Note2) Measure the output DC voltage difference between the following modes at S1=S2=S3=1

a) S4=S5=S6=1 b) S4=2, S5=S6=1 c) S5=2, S6=1 d) S6=2

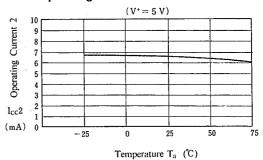
■ CONTROL INPUT - OUTPUT SIGNAL

CTLI	CTL2	MUTE	OUTPUT SIGNAL
L	L.	L	V _{IN} I
Н	L	L	V _{IN} 2
L/H	Н	L	V _{iN} 3
L/H	L/H	Н	Inside DC

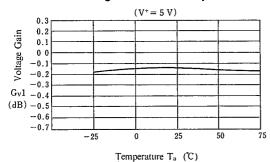
■ TERMINAL EXPLANATION

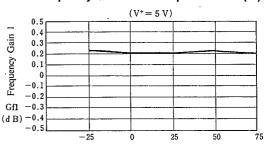

PIN NO.	PIN NAME VOLTAGE VINI VIN2 VIN3 (Input)	. VOLTAGE	INSIDE EQUIVALENT CIRCUIT			
6 V _{INI} 8 V _{IN2} 1 V _{IN3}		500 15k 2.5V				
7 9 4	CTL1 CTL2 Mute (Switching)		2.3V 1.9V 277			
3	Vout (Output)	1.8V	O OUT			
2	V+	5 V				
, 5	GND					

■ TEST CIRCUIT

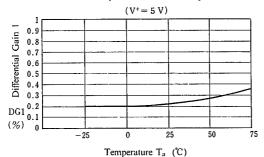


PARAMETER	S I	S 2	S 3	S 4	\$ 5	S 6	TEST PART
Icci	1	1	1	. 1	1	1	V+
I cc2	1	1	1	1	1	1	
G _{v1}	2	1	1	1	1	1	v_0
Gn	2	1	1	1	1	1	
DG_1	2	1	1	1	1	1	
DP_1	2	1	1	1	1	1	
Vosi	1	1	1	2	1	1	Vo
CT 1	2	1	1	2	1	1	v_0
CT 2	2	1	1	1	2	1	
СТ 3	1	2	1	1	1	1	
CT 4	1	2	1	2	2	1	
CT 5	1	1	2	1/2	1	1	
СТмі	2	1	1	1	1	2	v_0
CT _{M2}	1	2	1	2	1	2	
СТмз	1	1	2	1/2	2	2	
Vosi	1	1	1	2	1	1	Vo
Vcı	2	1	1	Vc	1	1	Vc
THD	2	1	1	1	1	1	v_0

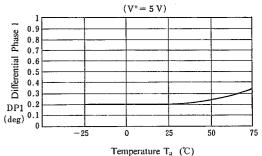

Operating Current 1 vs. Temperature


Operating Current 2 vs. Temperature

Voltage Gain 1 vs. Temperature

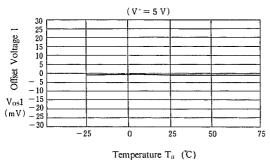


Frequency Gain 1 vs. Temperature Ta (°C)

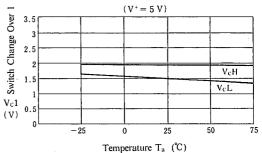


Temperature Ta (°C)

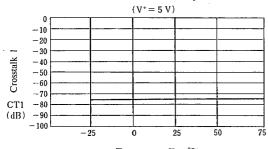
Differential Gain 1 vs. Temperature

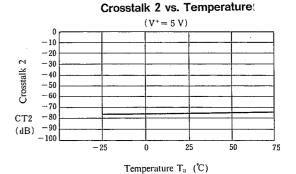


Differential Phase 1 vs. Temperature

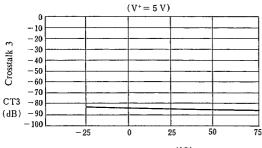


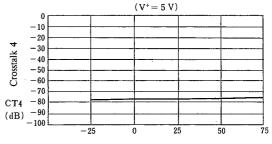
■ TYPICAL CHARACTERISTICS


Offset Voltage 1 vs. Temperature

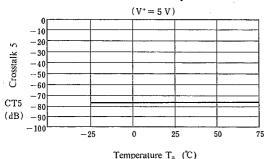


Switch Change Over 1 vs. Temperature

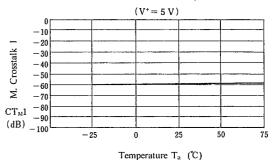

:Crosstalk 1 vs. Temperature


Temperature T_n ($^{\circ}$ C)

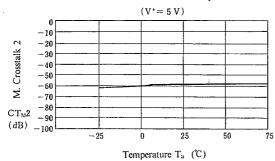
Crosstalk 3 vs. Temperature

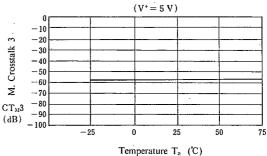

Temperature T_a $(\hat{\mathbb{C}})$

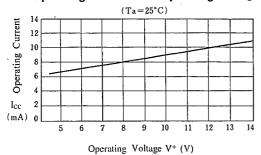
Crosstalk 4 vs. Temperature

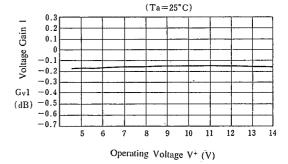


Temperature T_a (°C)

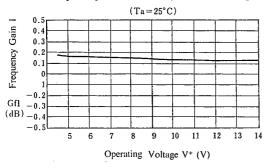

Crosstalk 5 vs. Temperature


M. Crosstalk 1 vs. Temperature

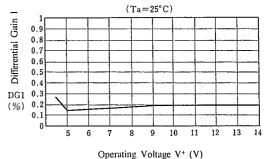

M. Crosstalk 2 vs. Temperature


M. Crosstalk 3 vs. Temperature

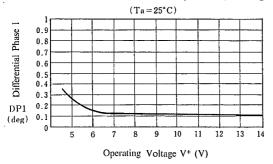
Operating Current vs. Operating Voltage

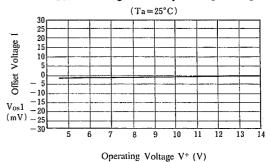


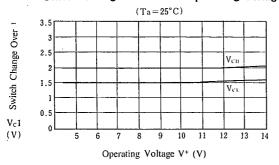
Voltage Gain 1 vs. Operating Voltage

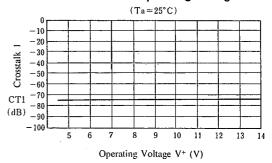


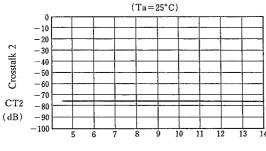
■ TYPICAL CHARACTERISTICS


Frequency Gain 1 vs. Operating Voltage

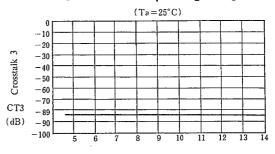

Differential Gain 1 vs. Operating Voltage


Differential Phase 1 vs. Operating Voltage

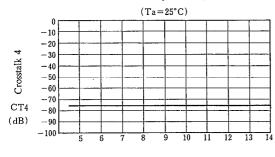

Offset Voltage 1 vs. Operating Voltage


Switch Change Over 1 vs. Operating Voltage

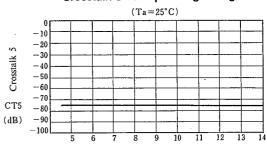
Crosstalk 1 vs. Operating Voltage



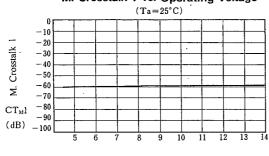
Crosstalk 2 vs. Operating Voltage


Operating Voltage V+ (V)

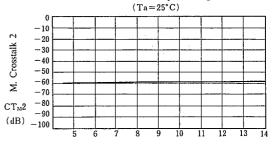
Crosstalk 3 vs. Operating Voltage


Operating Voltage V+ (V)

Crosstalk 4 vs. Operating Voltage

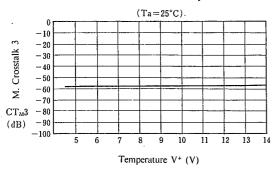

Operating Voltage V+ (V)

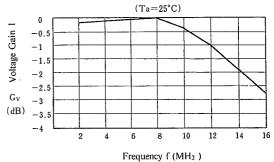
Crosstalk 5 vs. Operating Voltage


Operating Voltage V+ (V)

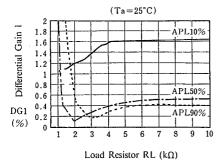
M. Crosstalk 1 vs. Operating Voltage

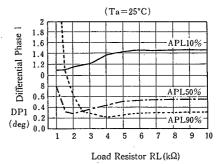
Operating Voltage V* (V)

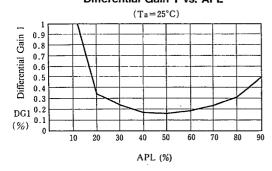

M. Crosstalk 2 vs. Operating Voltage

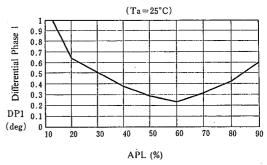

Operating Voltage V+ (V)

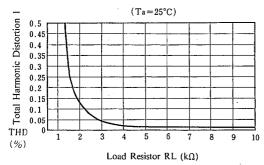
TYPICAL CHARACTERISTICS


M. Crosstalk 3 vs. Temperature


Voltage Gain 1 vs. Frequency


Differential Gain 1 vs. Load Resistor


Differential Phase 1 vs. APL


Differential Gain 1 vs. APL

Differential Phase 1 vs. APL

Total Harmonic Distortion 1 vs. Load Resistor

NJM2273

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.