2-INPUT 3CHANNEL VIDEO SWITCH

GENERAL DESCRIPTION

NJM2284 is a switching IC for switching over from one audio or video input signal to another. Internalizing 2 inputs, 1 output, and then each set of 3 can be operated independently. One of them is a Clamp type" and it can be operated while DC level fixed in position of the video signal. It is a higher efficiency video switch, featuring the operating supply voltage 4.75 to 13.0V, the frequency feature 10MHz, and then the Crosstalk 75dB (at 4.43MHz).

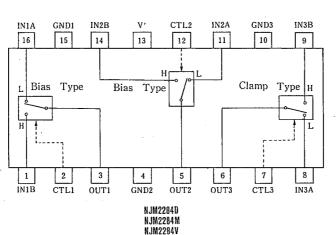
FEATURES

2 Input-1 Output Internalizing 3 Circuits (one of them is a Clamp type).

V+

- Wide Operating Voltage
- Crosstalk 75dB(at 4.43MHz)
- Wide Bandwidth Frequency Feature 10MHz(2VP.P Input)
- Package Outline DIP-16, DMP-16, SSOP-16

RECOMMENDED OPERATING CONDITION


Supply Voltage

4.75~13.0V

APPLICATIONS

• VCR, Video Camera, AV-TV, Video Disk Player.

BLOCK DIAGRAM

NJM2284D

PACKAGE OUTLINE

NJM2284M

MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT V	
Supply Voltage	V*	14		
Power Dissipation	Ро	(DIP16) 700	mW	
		(DMP16) 350	mW	
		(SSOP16) 300	mW	
Operating Temperature Range	Topr	-40~+85	°C	
Storage Temperature Range	Tstg	-40~+125	Ĉ	

ELECTRICAL CHARACTERISTICS

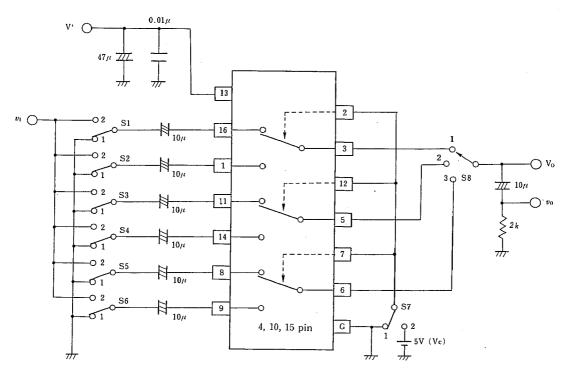
(V⁺=5V, Ta=25℃)

(Ta=25℃)

SYMBOL	ABOL TEST CONDITION		ТҮР.	MAX.	UNIT
Icci	V ⁺ =5V (Notel)	8.1	11.6	15.1	mA
ICC2	V+=9V (Note1)	10.2	14.6	19.0	mA
Gv	$V_{i} = 100 \text{ Hz}, 2 V_{P-P}, V_{O} / V_{i}$	-0.6	-0.1	+0.4	dB
GF	$V_1 = 2V_{P-P}, V_0(10MHz)/V_0(100kHz)$	-1.0	0	+1.0	dB
DG	$V_1 = 2V_{P-P}$, Standard Staircase Signal		0.3		%
DP	$V_1 = 2V_{P-P}$, Standard Staircase Signal	-	0.3	-	deg
Vos	(Note2)	-10	0	+10	mV
СТ	$V_1 = 2V_{P-P}, 4.43MHz, V_0/V_1$	—	-75		dB
V _{CH}	All inside Switch ON	2.5			v
V _{CL}	All inside Switch OFF	<u> </u>	-	1.0	v
	Icc1 Icc2 Gv GF DG DP Vos CT VCH	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ICC1 V ⁺ =5V (Notel) 8.1 ICC2 V ⁺ =9V (Notel) 10.2 Gv V ₁ = 100kHz, 2V _{P.P} , V ₀ /V ₁ -0.6 G _F V ₁ = 2V _{P.P} , V ₀ (10MHz)/V ₀ (100kHz) -1.0 DG V ₁ = 2V _{P.P} , Standard Staircase Signal Vos (Note2) -10 CT V ₁ = 2V _{P.P} , 4.43MHz, V ₀ /V ₁ V _{CH} All inside Switch ON 2.5	Index Viscounce Ref Interview Icc1 V ⁺ =5V (Notel) 8.1 11.6 Icc2 V ⁺ =9V (Notel) 10.2 14.6 Gv V1 = 100kHz, 2V _{P.P} , V _O /V1 -0.6 -0.1 GF V1 = 2V _{P.P.} , V _O (10MHz)/V _O (100kHz) -1.0 0 DG V1 = 2V _{P.P.} , Standard Staircase Signal 0.3 DP V1 = 2V _{P.P.} , Standard Staircase Signal 0.3 Vos (Note2) -10 0 CT V1 = 2V _{P.P.} , 4.43MHz, V _O /V1 -75 V _{CH} All inside Switch ON 2.5	Index V1 Index Index <thindex< th=""> <thindex< th=""> Ind</thindex<></thindex<>

(Note1) S1=S2=S3=S4=S5=S6=S7=1

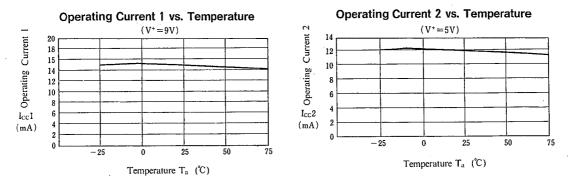
(Note2) S1=S2=S3=S4=S5=S6=1, $S7=1\rightarrow 2$ Measure the output DC voltage difference

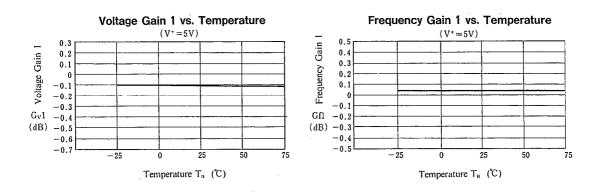

■ TERMINAL EXPLANATION

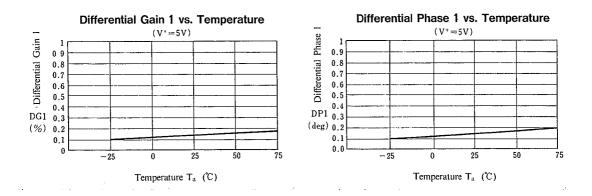
PIN No.	PIN NAME	VOLTAGE	INSIDE EQUIVALENT CIRCUIT			
16 1 11 14	IN 1 A IN 1 B IN 2 A IN 2 B (Input)	2.5V	IN 500 15k 777 2.5V			
89	I N 3 A I N 3 B (Input)	1.5V				
2 12 7	CTL 1 CTL 2 CTL 3 (Switching)	•	2.3V + 1.9V + 20k + 20			
3	OUT 1	1.8V				
5	OUT 2					
6	OUT 3 (Output)	0.8 V	• • • • • • • • • • • • • • • • • • •			
13	V+	5 V				
15 4 10	GND 1 GND 2 GND 3					

-New Japan Radio Co.,Ltd.-

5

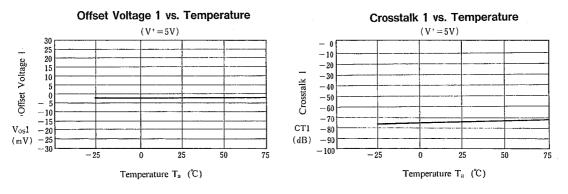

TEST CIRCUIT



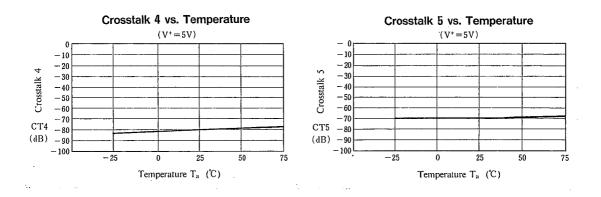

This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

Parameter	SI	S 2	- S3	S 4	S 5	S 6	S 7	S 8	Test Par
Icci	1	1	1	1	1	1	1	1.	V+
Icc2	1	1	1	1	1	1	1	1	
Gv1	2	1	.1	1	1	1	1	1	v ₀
Gn	2	1	1	1	1	1	1	1	
DGı	2	1	1	1	1	1	1	1	
DPı	2	1	1	1	1	1	1	1	
CT 1	2	1	1	1	1	1	2	1	. · v0
CT 2	1	2	1	1	1	1	1	1	
CT 3	1	1	2	1	1	1	2	2	
CT 4	1	1	1	2	1	1	1	2	
CT 5	1	1	1	1	2	1	2	3	
CT 6	1	1	1	1	1	2	1	3	
Vosi	1	1	1	1	1	1	1/2	1	Vo
Vcı	1/2	2/1	1	1	1	1	Vc	1	Vc
THD	2	1	1	1	1	1	1	1	v ₀

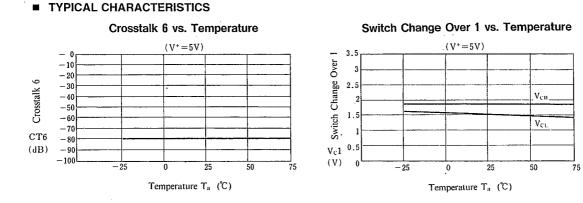
■ TYPICAL CHARACTERISTICS

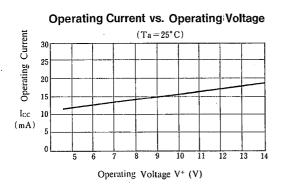



-New Japan Radio Co.,Ltd.-

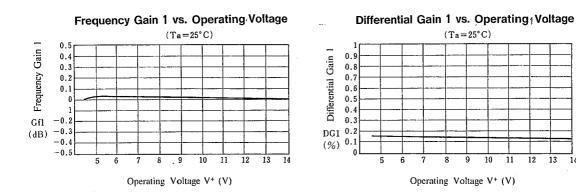

5-271

TYPICAL CHARACTERISTICS



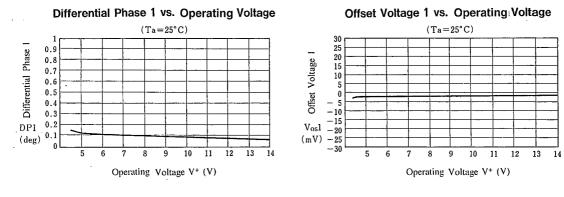


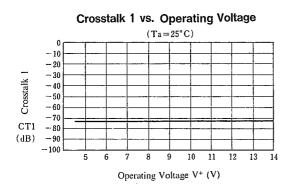
-New Japan Radio Co., Ltd.


5-272-

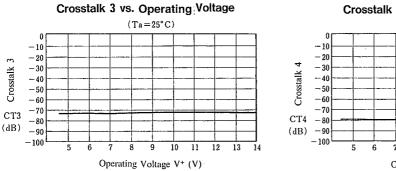
5

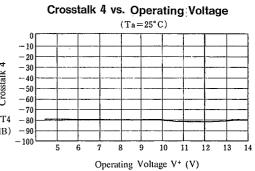
Voltage Gain 1 vs. Operating Voltage (Ta=25°C) 0.3 0.2 Voltage Gain 1 0.1 Λ -0.1 -0.2 -0.3 -0.4 $G_{\rm V}1 - 0.5$ (dB) - 0.6-0.79 10 11 12 13 14 5 6 8 7 Operating Voltage V+ (V)

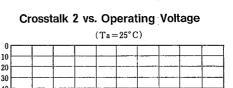



-New Japan Radio Co.,Ltd.

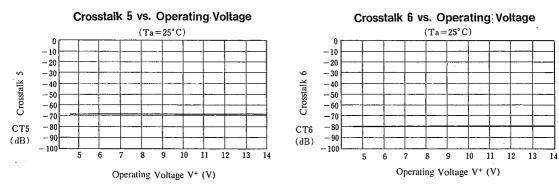
14

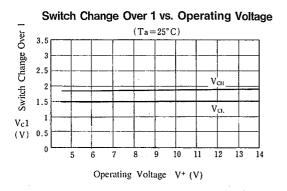

5-273


TYPICAL CHARACTERISTICS

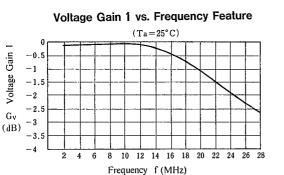


Crosstalk 2 vs. Operating Voltage $(Ta = 25^{\circ}C)$ 0 -10 - 20 Crosstalk 2 -30--- 40 - 50 -60 -70CT2 - 80 (dB) -90 -- 100 5 6 7 8 9 10 11 12 13 14 Operating Voltage V+ (V)

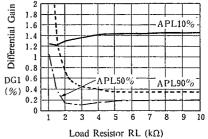



5

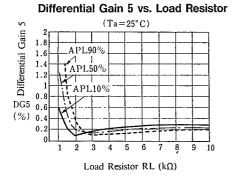
—New Japan Radio Co., Ltd.

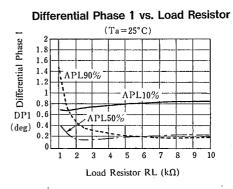

TYPICAL CHARACTERISTICS

-New Japan Radio Co., Ltd.-


Diffeerntial Gain vs. APL $(Ta=25^{\circ}C)$ 1 Differential Gain 0.9 0.8 0.7 0.6 0.5 0.4 DG5 0.3 (%) 0.2 0.1 0.0 10 20 30 40 50 60 70 80 90 APL (%)

Voltage Gain 1


Gv


Differential Gain 1 vs. Load Resistor $(Ta = 25^{\circ}C)$ 2

-5-275

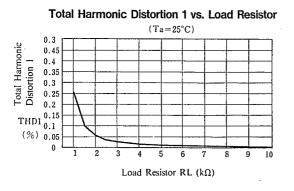
TYPICAL CHARACTERISTICS

Differential Phase 5 vs. Load Resistor ŝ $(Ta = 25^{\circ}C)$ Differential Phase 1.8 1.6 1.4 APL90% 1.2 1 APL50% 0.8 APL10% DP5 0.6 (deg) 0.4 0.2 0 2 3 4 5 6 9 1 7 8 10 Load Resistor RL (kΩ)

Differential Gain 1 vs. APL $(Ta = 25^{\circ}C)$ Differential Gain 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 DG1 0.2 (%) 0.1 0 10 20 30 40 50 60 70 80 90 APL (%)

.4

Differential Phase 1 vs. APL Differential Phase 5 vs. APL $(Ta = 25^{\circ}C)$ $(Ta = 25^{\circ}C)$ Differential Phase 1 Differential Phase 5 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 DP1 0.3 DP5 0.3 0.2 0.2 (deg) (deg) 0.1 0.1 0 0 10 20 30 40 50 60 70 80 90 20 30 50 60 70 80 10 40 90 APL (%) APL (%)


— New Japan Radio Co.,Ltd.

5-276-

5

-5-277

TYPICAL CHARACTERISTICS

-New Japan Radio Co., Ltd.

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.