6

LOW VOLTAGE DC MOTOR CONTROLLER

■ GENERAL DESCRIPTION

The NJM2606A is integrated circuit with wide operating supply voltage range for DC motor speed control. Especially, the NJM2606A is suited for 3V or 6V DC motor control.

■ FEATURES

Operating Voltage

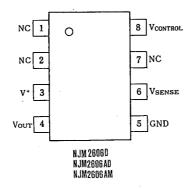
 $(1.8V \sim 8V)$

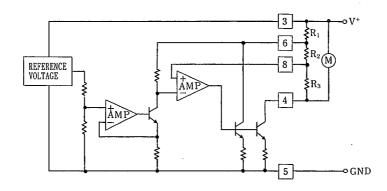
Internal Low Saturation Voltage Output Transistor

Package Outline

DIP8, DMP8

Bipolar Technology


■ PACKAGE OUTLINE



NJM2606D NJM2606AD NJM2606M NJM2606AM

■ PIN CONFIGURATION

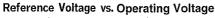
■ BLOCK DIAGRAM

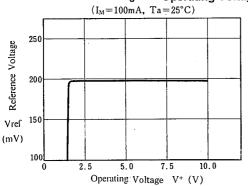
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

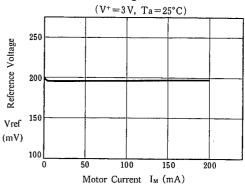
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+	10		
Peak-to-peak Output Current	lop	700	mA	
Power Dissipation	Pb	(DIP8) 500	mW	
·		(DMP8) 300-	mW	
Operating Temperature Range	Торг	−20~75 °C		
Storage Temperature Range	Tstg	-40~125	C	

(note) At SW ON. (3 sec. at motor locked or 100msec at duty factor less than 0.1%)

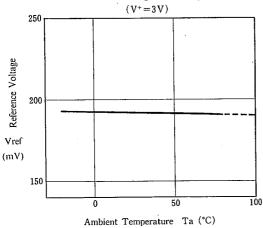

■ ELECTRICAL CHARACTERISTICS

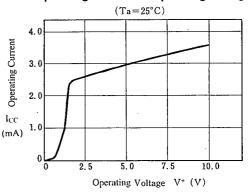

(Ta=25°C, V*=3V, I_M=100mA)

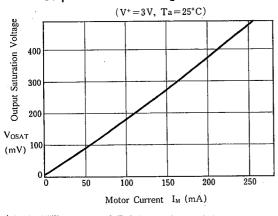
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	· Icc		_	2.4	6.0	mA
Output Saturation Voltage						
NJM2606	Vosat			0.18	0.3	V
NJM2606A	V _{OSAT}			0.13	0.18	V
Reference Voltage	VREF		0.18	0.20	0.22	V
vs. Operating Voltage	ΔV_{RSV}	$V^{+}=1.8V\sim8.0V$	_	0.7	8.0	mV
vs. Output Current	ΔV_{ROC}	I _M =20mA~200mA	_	2.7	9.0	mV
vs. Ambient Temperature	ΔV_{RT}	Ta=-20°C~+75°C	_	0.04	-	mV/°C
Current Ratio	κ¨	I _M =50mA~150mA	45	50	55	
vs. Operating Voltage	ΔK _{sv}	$V^{+}=1.8V\sim8.0V$	_	0.6	3.0	
		I _M =50mA~150mA	ļ			
vs. Output Current	ΔK _{oc}	I _M =(20~50)~(170~200)mA	·	1.0	4.0	
vs. Ambient Temperature	∆K _{TC}	$Ta = -20^{\circ}C \sim +75^{\circ}C$		1.0	-	1/°C
		$I_{M}=50\text{mA}\sim150\text{mA}$				


6

■ TYPICAL CHARACTERISTICS

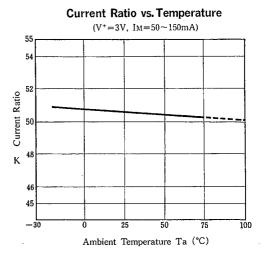


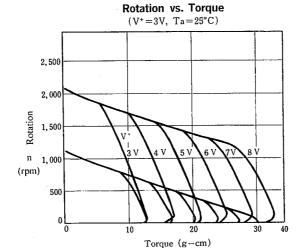

Reference Voltage vs. Motor Current


Reference Voltage vs. Temperature

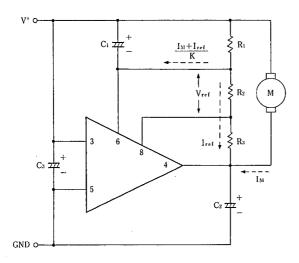

Operating Current vs. Operating Voltage

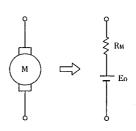
Output Staturation Voltage vs. Motor Current




Current Ratio vs. Operating Voltage

■ TYPICAL CHARACTERISTICS


Current Ratio vs. Motor Current (V+=3V, Ta=25°C) 52 48 46 0 50 100 150 200 250 Motor Current I_M (mA)



6

TYPICAL APPLICATION

Select C1, C2, C3 for each motor type.

Vref: Reference Voltage

K: Current Ratio

Im: Motor Current

RM: Internal Resistance of Motor

Eo: Motor Counter Electromotive Voltage

The voltage applied at the motor is set as V_M, which brings the following formula.

$$V_{M} = (R_{1} + R_{2} + R_{3}) I_{ref} + R_{1} \cdot \frac{I_{M} + I_{ref}}{K}$$

Now that,
$$I_{ref} = V_{ref}/R_2$$
 so that, $(I_{ref} = 100\mu \text{ A} \text{ setting is appropriate})$

$$V_M = \frac{V_{ref}}{R_2} (R_1 + \frac{R_1}{K} + R_2 + R_3) + \frac{R_1}{K} I_M \dots (1)$$

On the other hand, the voltage applied at the motor itself will be as in the following. $V_M = E_O + R_M \cdot I_M \cdot \cdots (2)$

Through (1), (2), and then leading to stabilize the control system.

$$R_M\!\cdot\! I_M\!>\!\frac{R_1}{K}\!\cdot\! I_M$$

$$\therefore R_1 < K \cdot R_M \cdot \cdots \cdot (3)$$

Taking in consideration of deviatons, $R_{I(MAX)} < K_{(MIN)} \cdot R_{M(MIN)}$ with the condition.

Items required checking in regard to the temperature coefficient

IC items

- 1. Reference voltage: Temperature coefficient of V_{ref}.
- 2. Current Ratio: Temperature coefficient of K
- ※ I External component items
- 3. Temperature coefficient of R₁, R₂ and R₃

The relation among these 3 parts takes the very important roll.

- 4. Temperature coefficient of motor internal resistance
- 5. Temperature coefficient of motor generative voltage
- 6. Temperature coefficient ratio of R_1 and R_M

Count up from 3.4.

NJM2606/2606A

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.