

SINGLE-SUPPLY DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM3404A is high performance single supply dual operational amplifier. The NJM3404A is a half type of the NJM3403A, quad operational amplifier.

The NJM3404A is improved version of the NJM2904 on slew rate & cross-over distortion.

(+4V~+36V)

(2.0mA typ.)

 $(1.2V/\mu s typ.)$

DIP8, DMP8, SIP8, SSOP8

FEATURES

- Single Supply
- Operating Voltage

Low Operating Current

Slew Rate

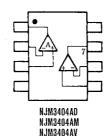
Package Outline

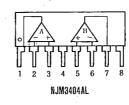
Bipolar Technology

■ PACKAGE OUTLINE

N.IM34N4AD

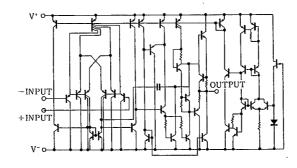
NJM34D4 AM





NJM3404AV

*S-Type (SIP-9) available


PIN CONFIGURATION

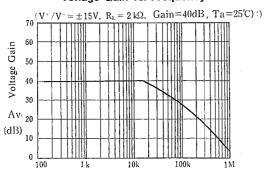
PIN FUNCTION 1. A OUTPUT 2. A-INPUT 3. A+INPUT 5. B+INPUT 6. B-INPUT 7. B OUTPUT 8. V.

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

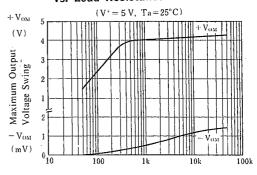
(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*(V*/V-)	36V(or ±18)	V	
Differential Input Voltage	Viii	36	V	
Input Voltage	V _{IC}	-0.3~36	٧	
Power Dissipation		(DIP8) 500	mW	
	P _D	(DMP8) 300	mW	
		(SSOP8) 250	mW	
		(SIP8) 800	mW	
Operating Temperature Range	Торг	Topr -40~+85		
Storage Temperature Range	T _{stg}	-40~+125	°C	

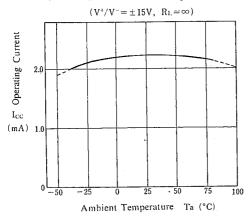

■ ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C, V^{+}/V^{-}=\pm 15V)$

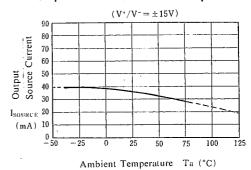
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	$R_S = 0\Omega$		2	5	mV
Input Offset Current	I _{IO}	Y	-	5	50	nA
Input Bias Current	IB		_	70	200	nΑ
Large Signal Voltage Gain	Av	$R_L > 2K\Omega$	88	100	_	dB
Maximum Output Voltage Swing	V _{OM}	$R_L = 2k\Omega$	±13	±14	<u> </u>	V
Input Common Mode Voltage Range	V _{ICM}		-15~+13			V
Common Mode Rejuction Ratio	ĊMŔ	DC	70	90	i —	dB
Supply Voltage Rejuction Ratio	SVR		80	94		dB
Operating Current	Icc	$R_L = \infty$		2.0	3.5	mA
Output Source Current	ISOURCE	$V_{1N}^{+}=1V, V_{1N}^{-}=0V$	20	30	<u> </u>	mΑ
Output Sink Current	I _{SINK}	$V_{IN}^{+}=0V, V_{IN}^{-}=1V$	10	20	—	mΑ
Slew Rate	SR		-	1.2		v/μS
Unity Gain Bandwidth	fr		— .	1.2	-	MHz


■ TYPICAL CHARACTERISTICS

Voltage Gain vs. Frequency

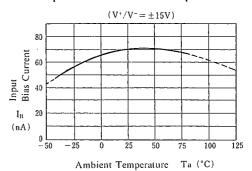

Frequency f (Hz)

Maximum Output Voltage Swing vs. Load Resistance

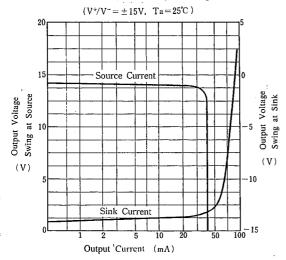


Load Resistance, R_L (Ω)

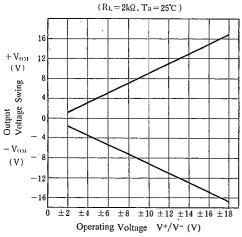
Operating Current vs. Temperature


Output Source Current vs. Temperature

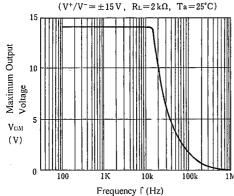
Input Offset Voltage vs. Temperature

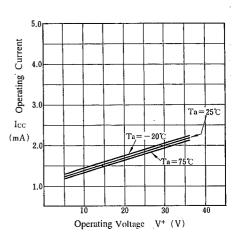


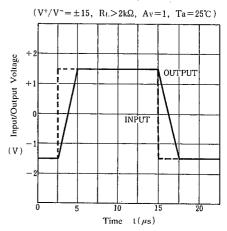
Input Bias Current vs. Temperature

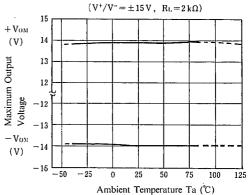


■ TYPICAL CHARACTERISTICS

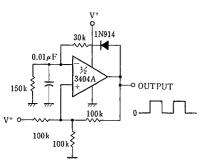

Output Source Current Output Sink Current vs. Output Voltage Swing

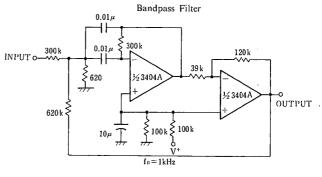

Output Voltage Swing vs. Operating Voltage


Maximum Output Voltage vs. Frequency


Operating Current vs. Operating Voltage

Pulse Response




Maximum Output Voltage vs. Temperature

■ TYPICAL APPLICATIONS

Square Wave Oscillator

NJM3404A

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.