VIDEO AMPLIFIER

GENERAL DESCRIPTION

The NJM592 is a video amplifier of differential input and differential output.

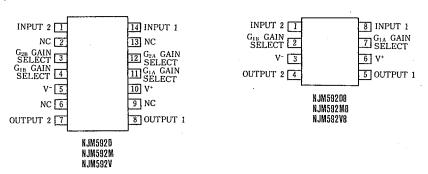
The NJM592 is suitable for a preamplifier of memory equipment and video and pulse signal amplifier.

FEATURES

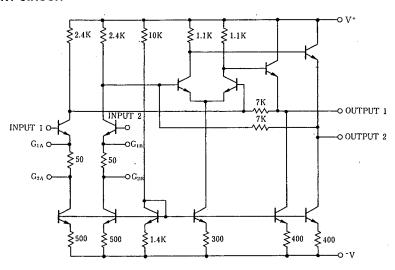
- Wide Fregueney Range
- (40MHz, 90MHz typ.) Differential Input, Differential Output.
- With Gain Select Terminal
- Package Outline

DIP 8 /14, DMP8/14, SSOP 8/14.

Bipolar Technology


NJM592D NJM592M NJM592D8 NJM592M8

NJM592V


■ PACKAGE OUTLINE

NJM592V8

PIN CONFIGURATION

■ EQUIVALENT CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

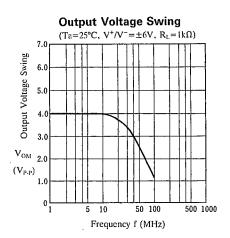
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+/V-	±8	V	
Differential Input Voltage	Voler	±5	V	
Common Mode Input Voltage	V _{CM}	±6	V	
Output Current	Io	10	mA	
Operating Temperature Range	Торг	-40~+85	r	
Storage Temperature Range	Tstg	-40~+125	°C	
Power Dissipation	Pb	(DIP14) 500	mW	
		(DMP14) 300	mW	
		(SSOP14) 300	mW	
		(DIP8) 500	mW	
		(DMP8) 300°	mW	
		(SSOP8) 250	mW	

■ ELECTRICAL CHARACTERISTICS

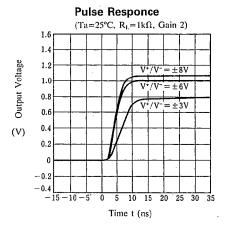
 $(Ta=25^{\circ}C, V^{+}=\pm 6V, V_{CM}=0)$

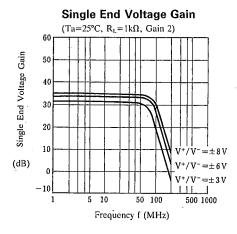
PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Differential Voltage Gain1 (note 1) Differential Voltage Gain2 (note 2, 4)	$R_L = 2k\Omega$, $V_{OUT} = 3V_{P-P}$	250 80	400 100	600 120	ν̈́ν
Bandwidth Gain1 (note 1) Bandwidth : Gain2 (note 2,4)		_	40 90		MHz
Rise Time Gain1 (note 1) Rise Time Gain2 (note 2,4)	$V_{OUT} = IV_{p,p}$		10.5 4.5		ns
Propagation Delay 1 Gain1 (note 1) Propagation Delay 2 Gain2 (note 2,4)	$V_{DMTF} = IV_{p,p}$	_	7.5 6.0	_	ns
Input Resistance Gain1 (note 1) Input Resistance Gain2 (note 2,4)		-	4.0	_	kΩ
Input Capacitance Gain2 (note 2,4)			2.0	_	pF
Input Offset Current		_	0.4	5.0	μΑ
Input Bias Current			9.0	30	μΑ
Input Noise Voltage	BW=1kHz~10MHz	_	12	_	μVrms
Input Voltage Range		_		±1.0	V
Common Mode Rejection Ratio Gain2 (note 4) Common Mode Rejection Ratio Gain2 (note 4)	$V_{CM} = \pm 1 \text{ V, } f < 100 \text{ kHz}$ $V_{CM} = \pm 1 \text{ V, } f = 5 \text{ MHz}$	60 —	86 60	_	dB
Supply Voltage Rejection Ratio Gain2 (note	$\Delta V^{\dagger}/V = \pm 0.5V$	50	70	_	dB
Output Offset Voltage Gain1 (note 1) Output Offset Voltage Gain2 (note 2,4) Output Offset Voltage Gain3 (note,3)	$R_{L} = \infty$ $R_{L} = \infty$ $R_{L} = \infty$		0.35	1.5 1.5 0.75	V
Output Common Mode Voltage	$R_L = \infty$	2.4	2.9	3.4	V
Output Voltage Swing	$R_L = 2K\Omega$	3.0	4.0	_	V
Output Resistance		_	20	_	Ω
Operating Current	$R_L = \infty$	_	18	24	mA

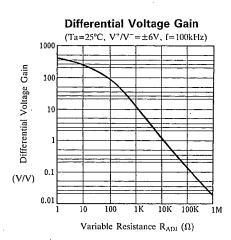
⁽note 1): Gain select pins G_{1A} and G_{1B} connected together. (Gain1)'

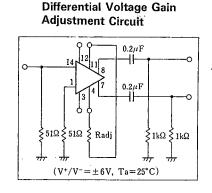

⁽note 2): Gain select pins G_{2A} and G_{2B} connected together. (Gain2)

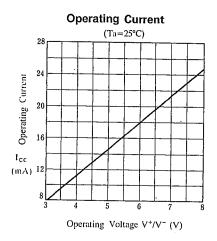

⁽note 3): All gain select pins open.

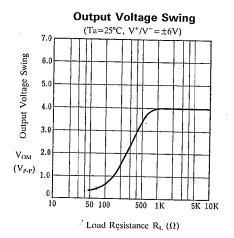

⁽note 4): Apply to only 14 pin package.

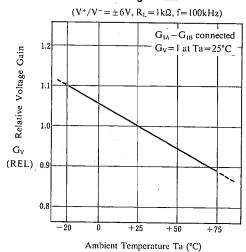

5


■ TYPICAL CHARACTERISTICS

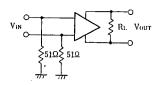


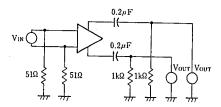


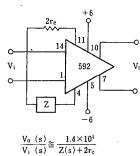




■ TYPICAL CHARACTERISTICS

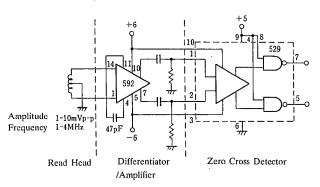




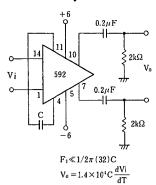

■ TEST CIRCUIT

■ TYPICAL APPLICATION

Basic circuit


 $\frac{\mathbf{V_0}(\mathbf{s})}{\mathbf{V_1}(\mathbf{s})} \approx \frac{1.4 \times 10^6}{\mathbf{Z}(\mathbf{s}) + 2\mathbf{r_e}}$ $\approx \frac{1.4 \times 10^4}{\mathbf{Z}(\mathbf{s}) + 32}$

Filter Network


Z NETWORK	FILTER TYPE	$\frac{V_0(s)}{V_1(s)}$ TRANSFER V ₁ (s) FUNCTION
0	LOW PASS	$\frac{1.0\times10^4}{L}\left[\frac{1}{s+R/L}\right]$
0	HIGH PASS	$\frac{1.4 \times 10^4}{R} \left[\frac{s}{s + 1/RC} \right]$
0RL_C	BAND PASS	$\frac{1.4 \times 10^4}{L} \left[\frac{s}{s^2 + R/L \ s + 1/LC} \right]$
0 R C C	BAND REJECT	$\frac{1.4 \times 10^4}{R} \left[\frac{s^2 + 1/LC}{s^2 + 1/LC + s/RC} \right]$

(note): R includes 2 r_e ($\approx 32\Omega$)

Disk/Tape Phase Modulated Readback Systems

Differentiation with High Common Mode Noise Rejection

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.