6


8-BIT HIGH SPEED MULTIPLYING D/A CONVERTER

■ GENERAL DESCRIPTION

NJMDAC-08C series are 8-bit monolithic multiplying digital to analog converters with very highspeed performance. Open collector output provides dual complementary current outputs increasing versatility in application.

Adjustable threshold logic input voltage through V_{LC} pin, can be connected to various type of digital IC products.

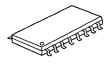
■ PACKAGE OUTLINE

NJMDAC-08DC

■ FEATURES

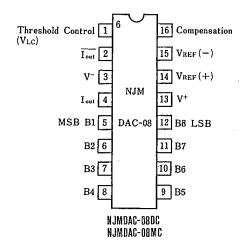
•	Resolution	(8bit)
•	Settling Time	(85nc)

•	Settling Time	(85ns)
•	Linearity Error	(±0.1%FS MAX (NJM DAC-08H))
•	Full Scale Current Temperature Drift	(50ppm/℃ MAX (NJM DAC -08H/E))

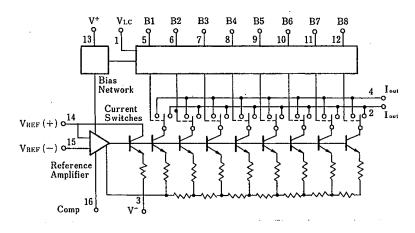

Wide Operating Voltage $(\pm 5V \sim \pm 18V)$ Wide Output Voltage Range $(-10V \sim +18V)$

Wide Range Adjustable Threshold Logic Input $(-10V \sim \pm 13.5V(V^*/V = \pm 15V))$

Multiplying operations can be performed


Package Outline DIP16, DMP16

Bipolar Technology



NIMDAC-08MC

■ PIN CONFIGURATION

■ BLOCK DIAGRAM

6

■ ABSOLUTE MAXIMUM RATINGS

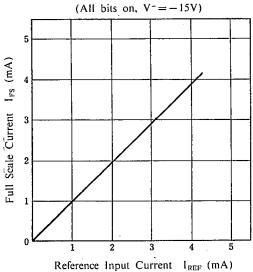
(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply voltage	V+-V-	36	V
Logic Input Voltage Range	Vı	V-~V-+36	V
Threshold Control Input Voltage	V _{LC}	V-~V+	V
Analog Current Outputs	lo	4.2	mA
Reference Input Voltage Range	V _{REF}	V~~V+	V
Reference Input Differential Voltage	$V_{REF(+)}^{-}V_{REF(-)}$	±18	V
Reference Input Current	IREF	5.0	mA
Power Dissipation	PD	(DIP16) 500	mW
		V+-V 36 V1 V-~V-+36 VLC V-~V+ Io 4.2 VREF V-~V+ VREF(+) VREF(-) ±18 IREF 5.0	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	− 40~+125	℃

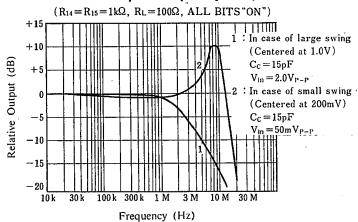
ELECTRICAL CHARACTERISTICS

 $(V^*=\pm 15V, I_{REF}=2.0mA, Ta=25^{\circ}C)$

_	ELECTRICAL CHA							
	PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	ÚNIT	
_	Resolution			8	8	8	Bit	
	Monotonicity			8	8	8	Bit	
_	Nonlinearity	NL				±0.39	%FS	
*1	Settling Time	ts	To ±1/2LSB,all bits switched ON or OFF		85	150	ns	
*1	Propagation Delay	tpin tphi	All bits switched		35	60	ns	
* 1	Full Scale Temperature Coefficient	TCIFS			±10	±80	ppm/°C	
-	Output Voltage Compliance	Voc	△I _{FS} <1/2 LSB Rout>20 MΩ typ.	-10		+18	V	
	Full Scale Current	IFS4	$V_{REF} = 10.000V$ $R_{14}, R_{15} = 5.000k\Omega$	1.94	1.99	2.04	mA	
	Full Scale Symmetry	IFSS	I _{FS4} -I _{FS2}		±2.0	±16.0	μA	
_	Zero Scale Current	Izs			0.2	4.0	μA	
_	Output Current Range	Iorı	$V_{REF} = 15 \text{ V, V}^- = 10 \text{ V} \stackrel{R_{16, 15}}{\parallel}$	2.1			mA	
	Output Current Range	I _{OR2}	$V_{REF} = 25 \text{ V}, V^- = 12 \text{ V}$ 15.000 kg	4.2			mA	
_	Logic Input Level "0"	VIL	V _{LC} =0 V			0.8	V	
_	" "1"	V _{1H}	V _{LC} =0 V	2.0			V	
_	Logic Input Current "0"	IIL	$V_{LC}=0 \text{ V}, V_{IN}=-10 \text{ V} \sim +0.8 \text{ V}$		-2.0	-10	μA	
	"1"	Im	$V_{LC} = 0 V, V_{IN} = 2 V \sim 18 V$		0.002	10	μA	
_	Logic Input Swing	Vis		-10		+18	V	
_	Logic Threshold Range	V _{TH2}		-10		+13.5	V	
	Reference Bias Current	Iis			-1.0	-3.0	μA	
*1	Reference Input Slew Rate	dI/dt		4.0	8.0		mA/μs	
	D. C. L. Compitivity	PSSIrs	V-=4.5V~18V, IREF=1.0mA		±0.0003	±0.01	0/10/	
4-2	Power Supply Sensitivity	PSSIFS	$V^- = -4.5 V \sim 18 V$, $I_{REF} = 1.0 \text{ mA}$	±0.002	±0.01	%/%		
_		I+	$V^{\pm} = \pm 5 \text{ V, } I_{REF} = 1.0 \text{ mA}$		2.3	3.8		
		I-	. "		-4.3	-5.8		
*3	Operating Current	I+	V+=5 V, V-=-15 V		2.4	3.8		
	obsB annam	i~	".		-6.4	-7.8	mA	
			· · · · · · · · · · · · · · · · · · ·				1	
		I+			2.5	3.8		

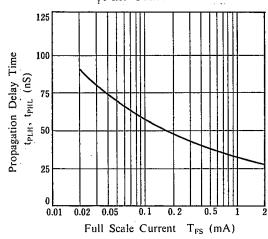

^{*1} Guaranteed by design

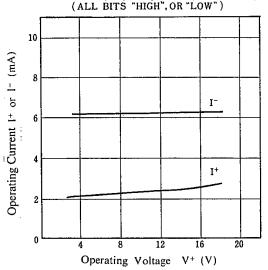
*2 Caluculation formula $PSSI_{FS} = \left(\frac{|\triangle I_{FS}|}{I_{FS}} \times 100\right) \div \left(\frac{18-4.5}{15}\right) \times 100$ *3 Caluculation formula $P_D = I^+ \times (V^+ - V^-) + 2I_{REF} \times |V^-|$

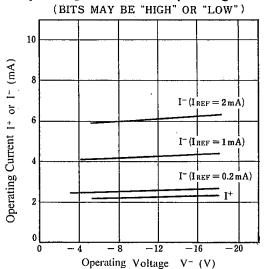

*3 Caluculation formula

■ TYPICAL CHARACTERISTICS

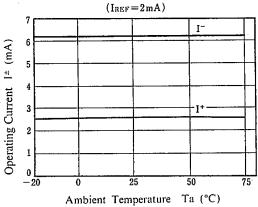

Full Scale Current vs. Reference Input Current

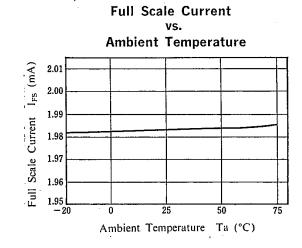

Reference Input Frequency Respons


Output Current vs. Output Voltage


Propagation Delay Time vs. Full Scale Current

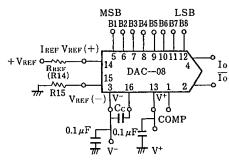
Operating Current vs. Operating Voltage (ALL BITS "HIGH", OR "LOW")

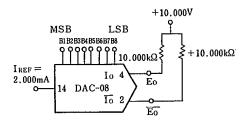

Operating Current vs. Operating Voltage



TYPICAL CHARACTERISTICS

Operating Current vs.


Ambient Temperature

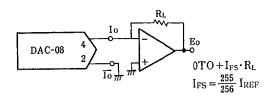

■ TYPICAL APPLICATION

1 Connecting Reference Voltage

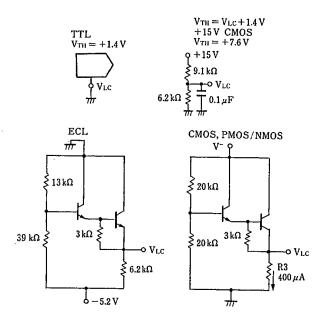
- ① Positive Reference Voltage
 Minimum Compensation Capacitance $C_C = R_{REF}(k\Omega) \times 15(pF)$
- ## R_{REF} 14 DAC-08 4 Io Io
 - ② Negative Reference Voltage Recommended C_c Value (When V_{REF} is DC)

2 Connecting Output Circuit

	ВІ	B2	ВЗ	В4	B5	В6	В7	B8	Eo	Εo
POS FULL RANGE	1	1	1	1	1	1	1	1	- 9.920	÷10.000
POS FULL RANGE-LSB	1	1	1	1	1	1	1	0	- 9.840	÷ 9.920
ZERO SCALE÷LSB	1	0	0	0	0	0	0	1	- 0.050	÷ 0.160
ZERO SCALE	1	0	0	0	0	0	0	0	0.000	÷ 0.050
ZERO SCALE-LSB	0	1	1	1	1	1	1	1	÷ 0.080	0.000
NEG FULL SCALE+LSB	0	0	0	0	0	0	0	1	÷ 9.920	- 9.840
NEG FULL SCALE	0	0	0	0	0	0	0	0	÷10.000	- 9.920


(1) Basic Bipolar Output Operation

MS I	SB LSE 81828384858687888	3
	٢١١١١١١	. Eo 2 5.000kΩ
o —	Io 4 14 DAC-08 To 2	5.000kΩ"
		$d_{\overline{E_0}}$


		ВΙ	B2	В3	B4	B5	B6	В7	В8	InmA	t _{amA}	Eo	Εo
FULL	RANGE	1	1	1	1	1	1	1	1	1.992	0.000	-9.960	-0.000
HALF	SCALE÷LSB	1	0	0	0	0	0	0	1	1.008	0.984	-5.040	-4.920
HALF	SCALE	1	0	0	0	0	0	0	0	1.000	0.992	-5.000	-4.960
HALF	SCALE-LSB	0	1	1	1	1	1	1	1	0.992	1,000	-4.960	-5.000
ZERO	SCALE÷LSB	0	0	0	0	0	0	0	1	0.008	1.984	-0.040	-9.920
ZERO	SCALE	0	0	0	0	0	0	0	0	0.000	1.992	-0.000	-9.950

(2) Basic Unipolar Negative Operation

3 Connecting Output Buffer Amp.

- (1) Positive Low Impedance Output Operation
- (2) Negative Low Impedance Output Operation
- 4 Connecting to various type logic IC products

 V_{TH} temperature compensation is considered in the above circuit

NJMDAC-08C

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.