

VFD CONTROLLER DRIVER

■ GENERAL DESCRIPTION

The NJU3421A is a VFD (Vacuum Fluorescent Display) Controller Driver with key scan function.

It contains display data RAM, address counter, command register, high voltage drivers, and serial interface circuit.

The display data, the command data and the key scanning data can be transmitted with the serial interface circuit, and VFD driving voltage can operate up to 45V. The NJU3421A is useful for car audio. VCR and other VFD application items.

■ PACKAGE OUTLINE

NJU3421AL

NJU3421AF

■ FEATURES

VFD Driving Voltage

Display Mode

VDD-VFDP ≤45V 9 Segments Display × 15 Digits 16 Segments Display × 8 Digits

Serial Interface

Display ON/OFF Function

Key Scan Function

Display Data RAM

 30×8 Bits

 8×4 Keys max.

key Input Data RAM

 8×4 Bits

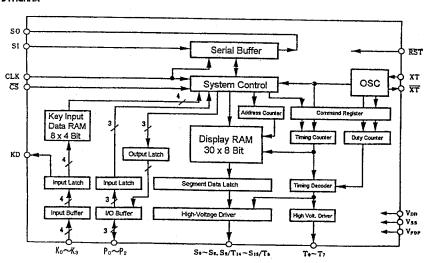
Key Input Detecting Function

● High Driving Current(1/0 Ports)10=10mA max.

Oscillation Circuit on-chip

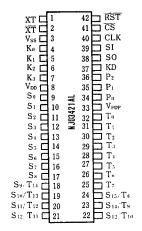
Power On Initialization

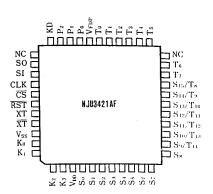
Operating Voltage


5V±10%

Package Outline

SDIP 42 / QFP 44-A1

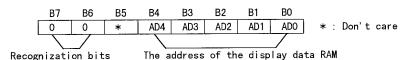

C-MOS Technology


■ BLOCK DIAGRAM

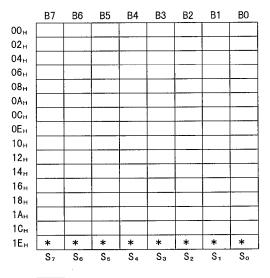
■ PIN CONFIGURATION

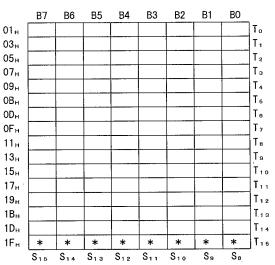
■ TERMINAL DESCRIPTION

١	NO.	OVMDOL	E !! !! 0 T ! 0 !!				
SD1P42	QFP44-A1 SYMBOL		F U N C T I O N				
8 3 33	3 42 29	V _{DD} V _{SS} V _{FDP}	POWER SOURCE GND VFD Driving Voltage				
1, 2	40, 41	XT, XT	Oscillation Terminals. For external clock operation, The clock should be input on XT terminal.				
4~7	43, 44, 1, 2	K₀~K₃	Key Input Terminals(Pull-Down Resistance)				
37	33	KD	Key Input Detecting Terminal. When key input, "H" level is output from this terminal.				
9~17 18~24 25~32	4~12 13~19 20, 21, 23~28	S ₀ ~S ₈ S ₉ /T ₁₄ ~S ₁₅ /T ₈ T ₇ ~T ₀	Segment Output Terminals(Pull-Down Resistance) Segment/Timing Output Terminals(Pull-Down Resistance) Timing Output Terminals(Pull-Down Resistance)				
42	39	RST	Reset Terminal (Pull-UP Resistance) "L":Reset				
34~36	30~32	P _o ~P ₂	I/O Ports (Pull-Up Resistance) Output:High current Output(LED Display is available) Input:Available by all "H" output setting.				
38	35	SO SO	Serial Data Output Terminal. The key scan data or the I/O port output data is output.				
39	36	SI	Serial Data (Address, I/O Ports, Command, Display) input Terminal.				
40	37	CLK	Shift Clock Input Terminal.				
41	38	cs	Chip Select Input Terminal. "L":Activated.				
-	22, 34	NC	Non Connection.				


■ FUNCTION DESCRIPTION

(1) Address Counter

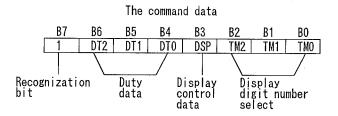

The address counter addresses the display data RAM which data are sent by the serial data transmission. When the first word of the serial data is recognized as the address of the display data RAM (The upper two bits of a byte must be "00".), the lower 5bits are set up into the address counter as the address of the display data RAM. The data of the display data RAM which are input sequentially are set into the specified address and the address counter increments.


Though the address counter consists of the 5-bit counter, the effective range is from "00000" (00_H) to "11101" $(1D_H)$ and the invalid range is from "11110" $(1E_H)$ and "11111" $(1F_H)$. The address of "11111" $(1F_H)$ is incremented to "00000" (00_H) .

The Address Data

The mapping of the display data RAM

* Don't Care



(2) COMMAND REGISTER

The Command Register is the register for setting the status of Display Duty, Display Digit Number and Display ON/OFF.

When the first word of serial transmmitted data is recognized as the command data (The upper one bit of a byte must be "1".), the lower 7 bits are set into the command register. After the command data are received the timing counter is initialized and then the input command is executed. During the initialization of the timing counter and the command execution, the display can be off. Therefore, the frequent command transmission causes the flicker of the display.

The default status of the display mode is display-off by the power on initialization function.

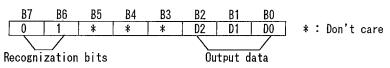
(2-1) Duty set

DT2	DT1	DT0	Timing signal Duty
0	0	0	2/16
0	0	1	4/16
0	1	0	6/16
0	1	1	8/16
1	0	0	10/16
1	0	1	12/16
1	1	0	14/16
1	1	1	15/16

(2-2) Display contorol set

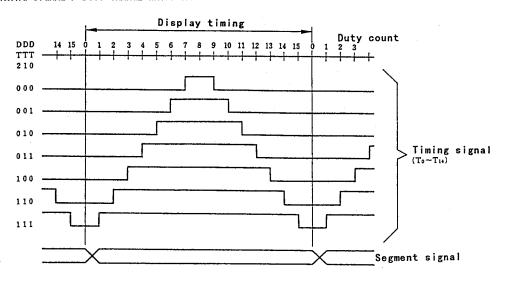
DSP	Display
0	OFF
1	ON

(2-3) Display digit number set

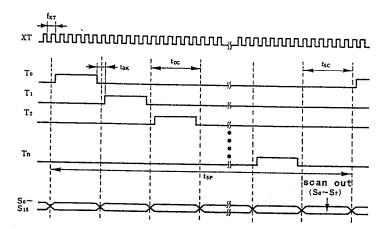

TM2	TM1	TMO	Digits
0	0	0	8
0	0	1	9
0	1	0	10
0	1	1	11
1	0	0	12
1	0	1	13
1	1	0	14
1	1	1	15

(3) 1/0 Port

The NJU3421A incorporates three I/O ports. As the output type of these three ports is the constructed by the N-channel and open-drain type FET of the low on-resistance and the pull-up resistor, the output driver can drive the LED. When "H" level is set with the I/O port output data, these I/O ports can be used as the input mode.


When the first word of serial data is recognized as the I/O port output data (the upper two bits of a byte must be "01"), The status of the data of the lower three bits are output from the I/O port.

The I/O port output data



■ TIMING SIGNAL / DUTY CHANGE WAVEFORM

■ DISPLAY TIMING CHART

Oscillation frequency

Minimum blanking time (Duty 15/16) : $t_{BK} = (1/f_{XT}) \times 96$

1character display time

key scanning time

1cycle display time

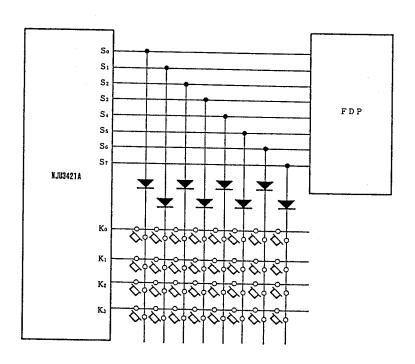
: f_{хт}

: $t_{DG} = t_{BK} \times 16$

: tsc = tpg

: $t_{SP} = t_{DG} \times character + t_{SC}$

(4) KEY INPUT CIRCUIT

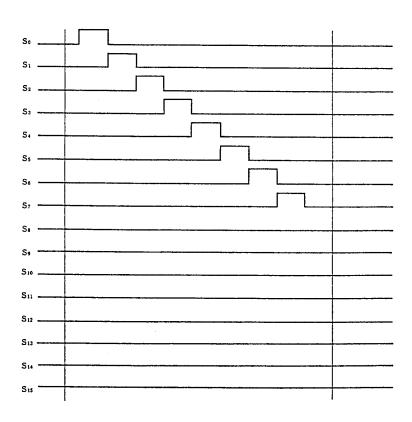

The key input circuit is constructed with the key scanning outputs (8 outputs) which are appropriated from the segment output (S_0 to S_7) for the display, the key input terminals (4 terminals) and the key switches as shown below. When the key scanning signal is output during the key pushed, the key input terminal receives the same level ("H") of the key scanning signal. If the keys are not pushed, the key input terminal receives "L" level at any time because of its pull-down resistor.

The received key data are stored in the key data RAM in sequence and the data can be get by the serial data transmittion.

The key input detecting function lets the key input detecting output terminal goes to "H" level when any key pushes. The "H" level output of the key input detecting output terminal is continued during the key pushed.

(4-1) Key condition vs Key input terminal level

key condition	input level
key pushed	"H"
not key pushed	"L"

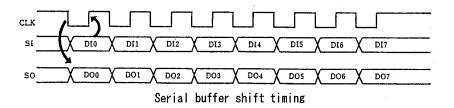

key matrix

■ FDP DISPLAY OUTPUT WAVEFORM

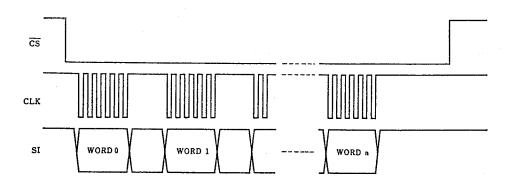
■ ENLARGED KEY SCAN SPAN

(5) SERIAL DATA TRANSMISSION

The data transmission with the external can be executed by the serial interface circuit only. This interface circuit requires the external shift clock input and can execute the bi-direction (input/output) action synchronously as shown below.


The serial data are grouped at a word which equalles to a byte (8 bits) for this device. The serial interface circuit is activated when the CS terminal is set to "L" level. While the CS is "L", the words of the serial data are able to transmitted using the shift clock (the CLK terminal) and the serial data input or output (the SI or SO terminal) synchronously.

On the data input status, the first transmitted word must be the address, the command or the I/O port output data. When the first word is the address data, the following words should be the display data. When the first word is the command or I/O port output data, the following words, if transmitted, are ineffective.


On the data output status, the transmitted word incorporates the key data corresponding to the lower 4 bits and the I/O port input data corresponding to the upper 4 bits (The MSB is invalid). The key data of the first word means the data by scanning the S_0 , these of the second word means the data by scanning the S_1 , ... finally, these of the 8th word means the data by scanning the S_7 . The I/O port input data means the last status data. For getting all key matrix data (8 x 4 max.), the data transmission of the 8 words is required.

After the key data transmission is ignored at less than 8 words, the next key data transmission is reset to the first (S_0 scanning) word.

CLK and SI/SO TIMING CHART

SERIAL TRANSMISSION FORMAT

(5-1) SERIAL INPUT DATA

The address data

В7 В6 В4 ВЗ B2 В1 В0 0 0 AD4 AD3 AD2 AD1 ADO * : Don't care *

The command data

WORD O

В7	B6	B5	B4	В3	B2	B1	B0
1	DT2	DT1	DT:0	DSP	TM2	TM1	TMO

The I/O port output data

B7	В6	B5	B4	В3	B2	B1	- B0	_
0	1	*	*	*	D2	D1	DO	* : Don't care

WORD $1 \sim n$ Display data are required when WORD 0 = address data Any data are become ineffective when WORD 0 = not address data

(5-2) SERIAL OUTPUT DATA

Serial output data

* : Don't care

(Key scanning data: $S_0 \sim S_7$)

WORD 8∼n Ineffective data

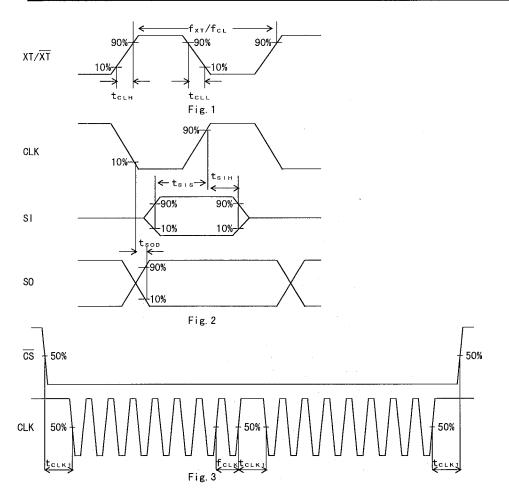
■ ABSOLUTE MAXIMUM RATINGS

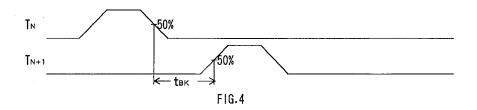
(Ta=25℃)

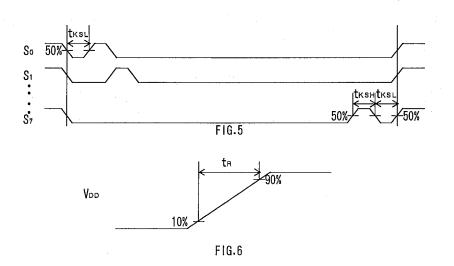
PARAMETER	SYMBOL	RATINGS	CONDITIONS	UNIT	
Operating Voltage	V _{DD}	-0.3 ~ +7.0		٧	
Input Voltage	Vin	-0.3 ~ V _{DD} +0.3		٧	
Output Voltage	· V _{out}	-0.3 ~ V _{DD} +0.3		. V	
VFD Driving Voltage	VFDP	V _{DD} -45~V _{DD} +0. 3		٧	
	Гон	-5	For a terminal except the display terminals		
"H" level Output Current	Гори 1	− 15	For a terminal, S _o ∼S ₇ Terminals only	mA	
	100н2	-35	For a terminal, $T_0 \sim T_7$, $S_8/T_{15} \sim S_{15}/T_8$ Terminals only		
"H" level Total Output Current	ΣΙοн	40	Sum of the output terminal except the display Terminals	A	
n level local output ourrent	ΣΙοσн	-100	Sum of the Display Terminals	mA	
"L" level Output Current	1010	20	For a terminal, P _o ∼P₁ Terminals only	mA	
"L" level Total Output Current	ΣΙοι	100	Sum of the Output terminals	mA	
Power Dissipation	P₀	SDIP:250 QFP:300		mW	
Operating Temperature Range	Topr	−30 ~ + 80		°C	
Storage Temperature Range	Tstg	−55 ~ +125		ပ္စ	

■ ELECTRICAL CHARACTERISTICS

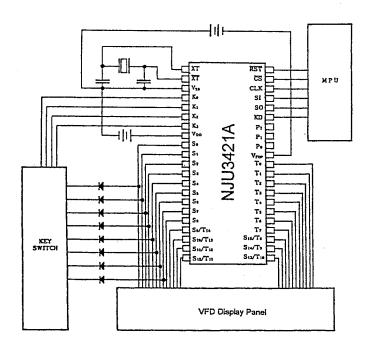
(Ta=25°C, V_{ss} =0V)


					20 0, 10	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage	Vob	V _{DD} Terminal	4. 5		5. 5	٧.
"H" Level Input Voltage	V _{1H1}	XT, RST, CS, SI, CLK, P₀~P₂ Terminals	0. 8V _{DD}			٧
The Edvol Triput Fortugo	V _{1 H 2}	K₀∼K₃ Terminals	0. 4V _{DD}			٧
"L" Level Input Voltage	V _{1 L 1}	XT, \overline{RST} , \overline{CS} , SI, CLK, $P_0 \sim P_2$ Terminals			0. 2V _{DD}	٧
	V 1 L 2	K _o ∼K ₃ Terminals			0. 16V _{DD}	V
"H" Level Output Voltage	V _{OH 1}	KD, SO Terminals V _{DD} =4.5V, I _{OH1} =-0.5mA	4. 0			v
, c	VoH2	KD, SO Terminals V _{DD} =4.5V, I _{OH2} =-1.2mA	3. 5			
	V _{OL 1}	KD, SO Terminals V _{DD} =4.5V, I _{OL 1} =+1.8mA			0. 4	
"L" Level Output Voltage	V _{OL2}	KD, SO Terminals V _{DD} =4.5V, l _{OL2} =+3.6mA			0. 6	v
	Nor 3	P _o ~P ₂ Terminals V _{DD} =4.5V, I _{OL3} =+10mA			0. 4	
Input Off Leak Current	l ı z	CS, CLK, SI Terminals V _{DD} =5.5V, V ₁ =0 or 5.5V			±1	uA
		$S_o \sim S_\vartheta$ Terminals $V_{DD}=4.5V$, $V_{OH}=V_{DD}-2.5V$	-7			
Display Output Current	Гон	$S_9/T_{14} \sim S_{16}/T_8$, $T_0 \sim T_7$ Term. $V_{DD}=4.5V$, $V_{OH}=V_{DD}-2.5V$	-15			mA
	Rur	RST Terminal VDD=5.0V, VI=Vss	140		260	
Pull-Up Resistance	Rup	Po~P2 Terminals VDD=5.0V, V1=Vss	10		20	kΩ
Dull Dawn und	R _{DK}	K _o ∼K _s Terminals V _{DD} =5.0V, V _I =V _{SS}	20		50	10
Pull-Down resistance	Rost .	S ₀ ~S ₈ , S ₉ /T ₁₄ ~S ₁₅ /T ₈ , T ₀ ~T ₇ V _{DD} =5. 0V, V _O =V _{SS} , V _{FDP} =V _{DD} -40V	70		200	kΩ
Logic Operating Current	I _{DD1}	V _{ss} Terminal, V _{DD} =5.0V, 4MHz Ceramic resonator, C ₁ =C ₂ =27pF Output Open, All Segment or Timing Output is OFF		1	2	mA
Display Operating Current	1002	V_{FDP} Terminal, V_{DD} =5.0V, Output Open except S0 \sim S8, T0 \sim T7 S ₉ /T ₁₄ \sim S ₁₅ /T ₀ All Segment or Timing Output is ON		7	10	mA


■ AC Characteristics


(Ta=25°C, $V_{DD}=5V\pm10\%$, $V_{ss}=0V$)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Oscillation Frequency	fхт		1	4	5	MHz
External Clock Input	fcL	Fig. 1				
External Clock Rise Time	tclH	' '6. '			20	ns
External Clock Fall Time	tcll				20	ns
Serial Input Setup Time	tsis	Fig. 2	60			ns
Serial Input Hold Time	tsıн	rig. Z	10			ns
Serial Output Delay Time	tsop	Fig. 2, Load=50pF			120	ns
Shift Clock Frequency	folk	Fig. 3			f _{x ⊤} /3	MHz
Shift Clock Interval Time	tclk	rig. 3	10			us
Minimum Blanking Time	· t _{BK}	Fig. 4, @f _{xT} =4MHz	20		30	us
"L" level Time	t _{ksL}	Fig. 5. @fx=4MHz.Key scan	20			us
"H" level Time	tksh	Trig. 5, wixt—4MMZ, key scan	20		30	us
Power Rise Time	t _R	Fig. 6	0. 05		50	ms
Reset Pulse Width	t _{RST}		10			us



■ APPLICATION CIRCUIT

NJU3421A

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.