

12-BIT SERIAL TO PARALLEL CONVERTER

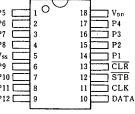
GENERAL DESCRIPTION

The NJU3713 is a 12-bit serial to parallel converter especially apply to MPU outport expander.

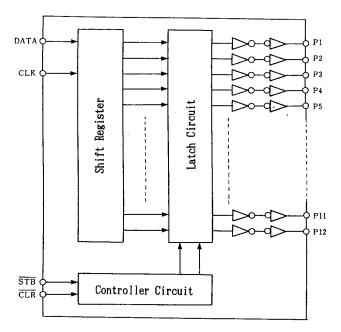
The effective outport assignment of MPU is available as the connection between NJU3713 and MPU is required only 4 lines.

Up to 5MHz signal can be input to the serial data input terminal and the data is output from parallel output buffer through serial in parallel out shift register and parallel data latches.

The hysteresis input circuit realized wide noise margin and high driverbility output buffer (25mA) can drive LED directly.


PACKAGE OUTLINE

NJU3713D


NJU3713G

FEATURES 12-Bit Serial in Parallel Out ----- 0.5V typ Hysteresis Input P5Operating Voltage P6 $5V \pm 10\%$ P7 **Operating Frequency** 5MHz or more ____ P8 [**Output Current** 25mA Vss [C-MOS Technology P9 | P10 Package Outline ----- DIP/SOP 18 P11 [P12 [

BLOCK DIAGRAM

-New Japan Radio Co.,Ltd.

TERMINAL DESCRIPTION

NO.	SYMBOL	FUNCTION	NO.	SYMBOL	FUNCTION
1	P5		10	DATA	Serial Data Input Terminal
2	P6	Parallel Converts	11	CLK	Clock Signal Input Terminal
3	P7	Data Output Terminals	12	STB	Strove Signal Input Terminal
4	P8		13	CLR	Clear Signal Input Terminal
5	Vss	GND	14	P1	
6	P9		15	P2	Parallel Converts
7	P10	Parallel Converts	16	P3	Data Output Terminals
8	P11	Data Output Terminals	17	P4	
9	P12		18	V _{DD}	Power Supply Terminal

FUNCTIONAL DESCRIPTION

(1) Reset

When the "L" level is input to the $\overline{\text{CLR}}$ terminal, all latches are reset and all parallel conversion output are "L" level.

Normally, the $\overline{\text{CLR}}$ terminal should be "H" level.

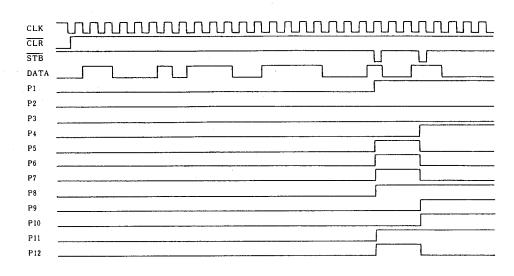
(2) Data Transmission

In the STB terminal is "H" level and input the clock signal to the CLK terminal, the serial data input from DATA terminal shift in the shift register by synclonizing at rising edge of the clock signal.

When the $\overline{\text{STB}}$ terminal change to "L" level, the data in the shift register transfer to the latch. Even if the $\overline{\text{STB}}$ terminal is "L" level, the input clock signal shift the data in the shift register, therefore, the clock signal control is needed.

Furthermore, the 4 input circuits have a hysteresis characteristics by using the schmitt trigger structure to protect the noise.

CLK	STB	CLR	0 P E R A T I O N
x	х	L	All latch are reset (the data in the shift register is no change). All of Parallel convert output are "L".
ſ	Н	н	The serial data input from DATA terminal input to the shift register. In this stage, the data in the latch is no change.
L H	L	Н	The data in the shift register transfer to the latch. And the data in the latch output from parallel output. The CLK input in the STB="L" and CLR="H" state, the data shift in the shift register and latched data also change in accordance with
			the shift register.


New Japan Radio Co., Ltd.

Note) X: Don't care

7-25

TIMING CHART

MARCHAR MAXIMUM RATINGS

(Ta=25°C)

		· · · · · · · · · · · · · · · · · · ·	u 10 0 /
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage Range	VDD	-0.5 ~ 7.0	V
Input Voltage Range	V ₁	V _{SS} -0.5 ~ V _{DD} +0.5	V
Output Voltage Range	Vo	Vss-0.5 ~ Vdd+0.5	_ V_
Output Current	١o	±25	mA
Power Dissipation	PD	700 (DIP) 400 (SOP)	mW
Operating Temperature Range	Topr	-25 ~ +85	°C
Storage Temperature Range	Tstg	-65 ~ +150	°C

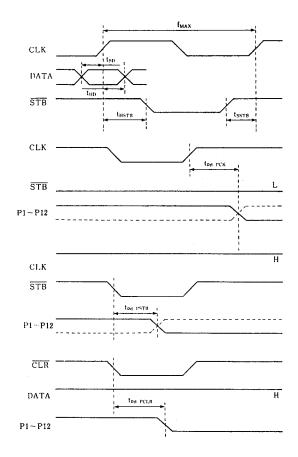
DC ELECTRICAL CHARACTERISTICS

					(V₀₀=4.5~	•5. 5V, Vs	s=0V, Ta	=25°C)	
PARAM	ETER	SYMBOL.	CONDITION		MIN	TYP	MAX	UNIT	
Operating Current		ldds	VIH=VDD, VIL=Vss				0.1	mA	
	High-Level	VIH			0. 7Vdd		Vdd	v	
Input Voltage	Low-Level	ViL			Vss		0. 3V _{dd}	v	
Input Leakage	Input Leakage Current		V1=0~VDD		-10		10	μA	
			Iон =-25m A	P1~P12 Terminals (Note 1)	Vdd-1.5		VDD	v	
High-Level Output Voltage		Vонд	lон ≕−15mA		Vdd-1.0		VDD		
			I _{он} =−10mA		V _{DD} -0.5		VDD		
Low-Level Output Voltage		Vold	I₀⊾≕+25mA		Vss		1.5		
			l₀⊾=+15mA		Vss		0.8	۷	
			lo∟=+10mA		Vss		0.4		
Outrant Shout O	Current		Vo=7V, V1=0V	P1~P12 Terminals (Note 2)			20		
Output Short C		losd	Vo=0V, V1=7V				20	mA	

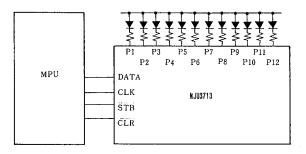
Note 1) Specified value represent output current per pin. When use, total current consideration and less than power dissipation rating operation should be required.

Note 2) $V_{DD}=7V$, $V_{SS}=0V$, 1 second per pin.

SWITCHING CHARACTERISTICS


 $(V_{DD}=4.5V\sim5.5V, V_{SS}=0V, Ta=-20\sim75^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Set-Up Time	tsd	DATA – CLK	20			ns
Hold Time	t _{HD}	CLK - DATA	20			ns
Set-Up Time	tsstb	stb - Clk	30			ns
Hold Time	tнятв	CLK – STB	30			ns
	t _р а рск	CLK - P1~P12			100	ns
Output Delay Time	t _{pd PSTB}	STB - P1~P12			80	ns
	tpd PCLR	CLR - P1~P12			80	ns
Max. Operating Frequency	f _{MA X}		5			MHz


*) Cour=50pF

SWITCHING CHARACTERISTICS TEST WAVEFORM

JRC

M APPLICATION CIRCUIT

7-28-

-New Japan Radio Co.,Ltd.=

(

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.