

1/4 DUTY LCD DRIVER

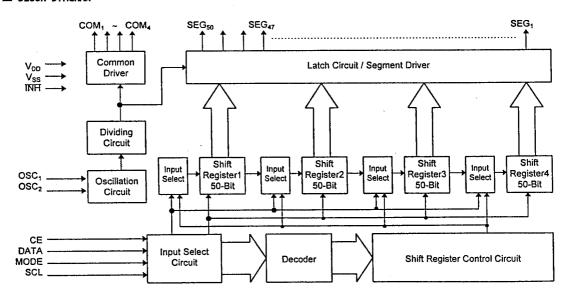
GENERAL DESCRIPTION

The NJU6433 is a 1/4 duty LCD driver for segment type LCD panel.

The LCD driver consists of 4-common and 50-segment drives up to 200 segments.

The NJU6433 is useful for the digital tuning system or others segment type display driver.

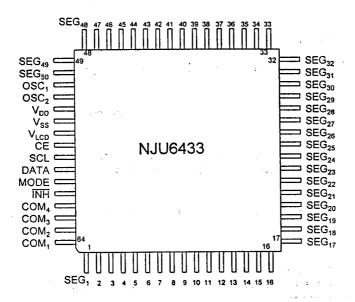
PACKAGE OUTLINE



NJU6433F

■ FEATURES

- 50 Segment Drivers
- Duty Ratio 1/4 (Up to 200-Segments)
- Serial Data Transmission (Shift Clock 2MHz max.)
- Oscillation Circuit On-chip (External Resistance Required)
- Display Off Function (INH Terminal)
- Operating Voltage --- 2.4~5.5V
- LCD Driving Voltage --- 6.5V Max.
- Package Outline --- QFP 64 (D1, G1)
- C-MOS Technology


BLOCK DIAGRAM

5

PIN CONFIGURATION

TERMINAL DESCRIPTION

NO.	SYMBOL	FUNCTION					
1~50	SEG ₁ ~ SEG ₅₀	LCD Segment Output Terminals					
51 52	OSC ₁ OSC ₂	Oscillation Terminals : External resistance is connected to these terminals.					
53	V _{DD}	Power Supply (+5V)					
54	Vss	Power Supply (OV)					
55	VLCD	Power Supply for LCD Driving The relation: IVDD - VLCD I≦ 1.3VDD, VLCD VSS must be maintained.					
56	CE	Chip Enable Signal Input Terminal: "H": LCD display data and mode setting data input "L": Disable Fall Edge: LCD display data latch					
57	SCL	Serial Data Transmission Clock Input Terminal: LCD display and Mode setting data are input synchronized SCL clock signal rise edge.					
58	DATA	Serial Data Input Terminal Data input timing : SCL clock rise edge					
59	MODE	Data or Mode Select Terminal "H": Data input mode "L": LCD display data input mode (refer the mode setting table for mode setting contents)					
60	TNH	Display-Off Control Terminal: When display goes to off, the display data in the shift-register is retained. "H": Display-On "L": Display-Off					
61~64	COM4~COM1	LCD Common Output Terminals					

■ FUNCTIONAL DESCRIPTION

(1) Operation of each block

(1-1)Oscillation Circuit:

The oscillation circuit operate by connecting external resistance (capacitance is incorporated).

This circuit provides the clock signal to both common and segment drivers.

(1-2)Divider Circuit

This circuit divides the oscillating signal to generate the common and segment timing.

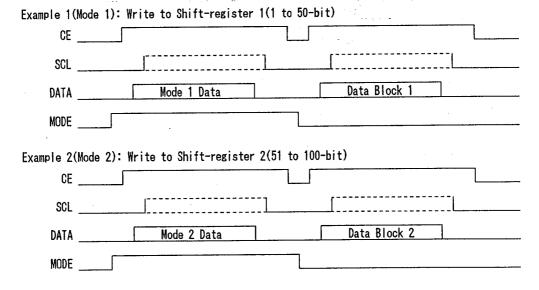
(1-3)Shift-Register

When the CE terminal is "H" (Enable mode), the display data is transferred to the shift-register synchronized by the shift clock on the SCL terminal.

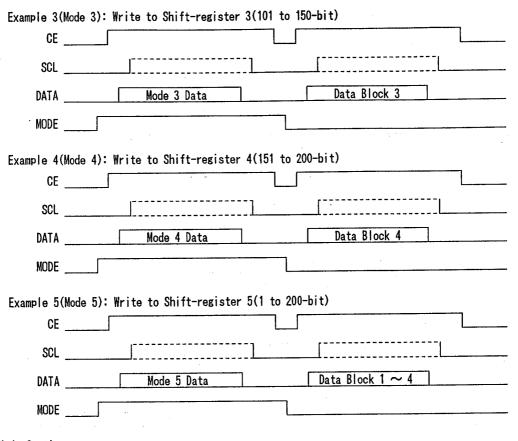
(1-4)Latch Circuit and Segment Driver

When the CE signal falling, the display data is latched, and the data controls the segment signal of display-on/off.

(2) Data Input Format

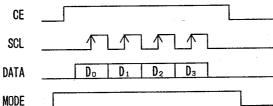

(2-1) Input Data Correspond to Segment Status

The "H" input data correspond to segment "ON" and "L" correspond to "OFF".


Data Dxxx	Segment Status
"H"	ON
"L"	OFF

(2-2)Write to Shift-register

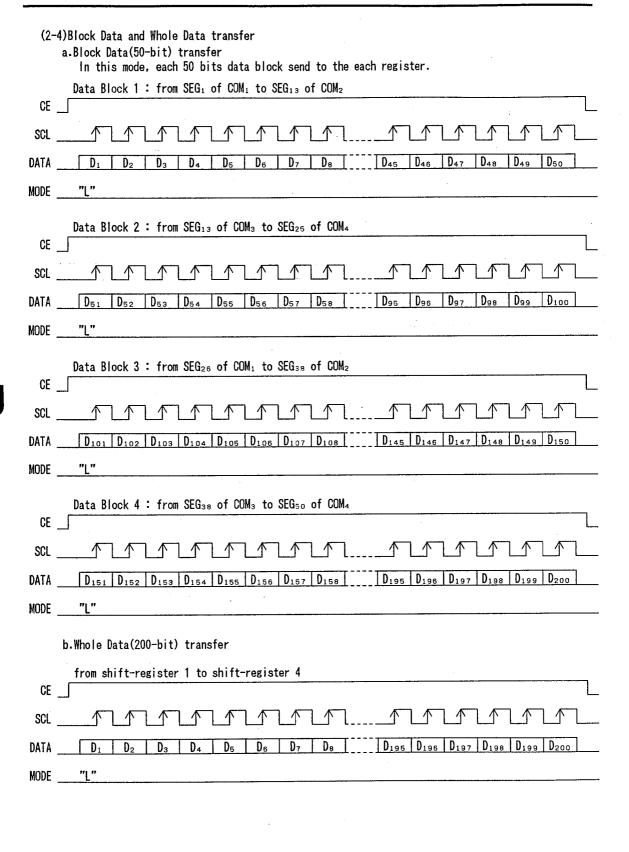
Write to shift-register performes Mode setting data writing and LCD display data writing.



(2-3)Mode Setting

Transferd register selection and all clear of the shift register are performed by writing 4-bit code shown below to the decoder in CE ="H" and MODE ="H" state.

< Input Timing Chart >



< Mode Setting Table >

CE Terminal	MODE Terminal	DATA Terminal MODE # Data D ₃ D ₂ D ₁ D ₀ (HEX)	Mode Set Up
	"H"	0 0 0 1 (01 _H)	Select the shift-register 1
		0 0 1 0 (02н)	Select the shift-register 2
		0 0 1 1 (03н)	Select the shift-register 3
"H"		0 1 0 0 (04 _H)	Select the shift-register 4
		0 1 0 1 (05 _H)	Select the all shift-register (1 to 4)
		1 1 1 1 (0F _H)	All shift-register is "L"

Note) The internal decoder is data through type. Therefore, the 8 bits data also can write though only 4 bits data from the CE falling are validated.

—New Japan Radio Co.,Ltd.-

(2-5)Display Data Correspond to Segment and Common Terminals

	2-5)Display Data Correspond to Segment and Common Terminals									
Mode	Data	Segment	COM ₁	COM ₂	COM₃	COM₄	Data Block			
Mode 1	D ₁ D ₂ D ₃ D ₄	SEG ₁	0	0	0	0	Data Block 1			
	D ₅ D ₆ D ₇ D ₈	SEG ₂	0	0	0	0				
				:			·			
	D45 D46 D47 D48	SEG ₁₂	0	0	0	0				
	D ₄₉ D ₅₀	SEG ₁₃	0	0						
Mode 2	D ₅₁ D ₅₂	SEG ₁₃			0	0	Data Block 2			
	D ₅₃ D ₅₄ D ₅₅ D ₅₆	SEG ₁₄	0	0	0	0_				
						:				
e e e	D ₉₇ D ₉₈ D ₉₉ D ₁₀₀	SEG ₂₅	0	0	0	. 0				
Mode 3	D ₁₀₁ D ₁₀₂ D ₁₀₃ D ₁₀₄	SEG ₂₆	0	0	0	0	Data Block 3			
·	D ₁₀₅ D ₁₀₆ D ₁₀₇ D ₁₀₈	SEG ₂₇	0	0	0	0				
		:	:	:	:					
	D ₁₄₅ D ₁₄₆ D ₁₄₇ D ₁₄₈	SEG ₃₇	0	0	0	0				
	D ₁₄₉ D ₁₅₀	SEG₃₃	0	0						
Mode 4	D ₁₅₁ D ₁₅₂	SEG38			0	0	Data Block 4			
	D ₁₅₃ D ₁₅₄ D ₁₅₅ D ₁₅₆	SEG39	0	0	0	0				
	:	•		• • •	:	:				
	D ₁₉₇ D ₁₉₈ D ₁₉₉ D ₂₀₀	SEG ₅₀	0	0	0	0				

MASOLUTE MAXIMUM RATINGS

PARAMETE	R	SYMBOL	RATINGS	UNIT
Operating Voltage (1)		V _{DD}	- 0.3 ~ + 7.0	V
Operating Voltage (2)	Note 1)	Arcd	V _{DD} - 6.5 ~ V _{SS}	٧
Input Voltage (1)	Note 2)	V _{1 (1)}	- 0.3 ~ + 7.0	V
Input Voltage (2)	Note 3)	V _{1 (2)}	- 0.3 ~ V _{DD} +0.3	٧
Output Voltage	Note 3)	Vo -	- 0.3 ~ V _{DD} +0.3	٧
Output Current (1)	Note 4)	10(1)	100	μA
Output Current (2)	Note 5)	lo(2)	1.0	mA
Power Dissipation		PD	300	m₩
Operating Temperature		Topr	- 30 ~ + 85	ဗ
Storage Temperature		Tstg	- 40 ~ + 125	r

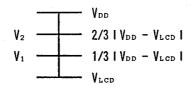
Note 1) IV_{DD} - V_{LCD} I ≦ 1.3V_{DD}, V_{LCD} ≦ V_{SS} Note 2) CE, SCL, DATA, MODE, TNH Terminals

Note 3) OSC1, OSC2 Terminals

Note 4) SEG₁ \sim SEG₅₀ Terminals

Note 5) COM₁ \sim COM₄ Terminals

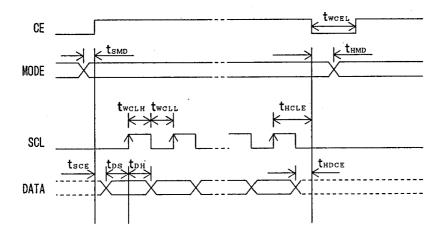
ELECTRICAL CHARACTERISTICS


· DC Characteristics

(Ta=25°C, $V_{DD}=5.0V$, $V_{ss}=0V$, $V_{LCD}=V_{DD}-6.5V$)

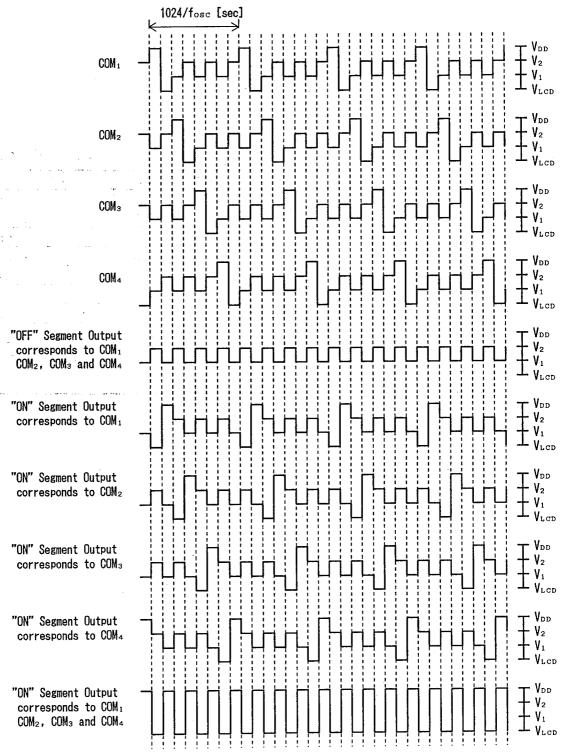
(14.40-4) 100-411									
PARAMETER	SYMBOL	CONDII	10	NS	MIN	TYP	MAX	UNIT	
Operating Voltage (1)	V _{DD}	V _{DD} Terminal		2.4		5.5	٧		
Operating Voltage (2)	VLCD	VLCD Terminal		Note 6)	Vss		V _{DD} -6.5	V	
"H" Input Voltage	VIH	CE,SCL,DATA,MO	DE,		0.7V _{DD}		V _{DD}	V	
"L" Input Voltage	VIL	TNH Terminals			Vss		0.3V _{DD}	٧	
"H" Input Current	I _{IH}	CE,SCL,DATA,MO	DDE.	V1=VDD			5.0	μA	
"L" Input Current	1 I E	INH Terminals		V1=Ass			5.0	μA	
"H" Output Voltage (1)	V _{OH(1)}	SEG1~SEG50	50 lo=-10μA		V _{DD} -1.0			٧	
"L" Output Voltage (1)	Vol(1)		1o=+10μA				V _{LCD} +1.0	٧	
Middle Level Voltage 1/3 (1)	V _{MS1/3}	SEG ₁ ~SEG ₅₀	I₀=±10µA		V ₁ -1.0	V ₁	V1+1.0	٧	
Middle Level Voltage 2/3 (1)	V _{MS2/3}	Note 7)	1 ₀ =±10μA		V ₂ -1.0	V ₂	V ₂ +1.0	٧	
"H" Output Voltage (2)	V _{OH(2)}	COM₁~COM₄	Io=-100μA		V _{DD} -0.6			٧	
"L" Output Voltage (2)	Vol (2)		1o=+100 MA				VLCD-0.6	٧	
Middle Level Voltage 1/3 (2)	V _{мс1/3}	COM1~COM4	Io=±100μA		V ₁ -0.6	V ₁	V ₁ +0.6	٧	
Middle Level Voltage 2/3 (2)	V _{MC2/3}	Note 7)	Io=±100μA		V ₂ -0.6	V ₂	V ₂ +0.6	٧	
Oscillating Frequency Range	fosc	OSC ₁ , OSC ₂ Terminals		25		200	kHz		
Oscillating Frequency	fosc		R=140kΩ		115	130	145	kHz	
Operating Current (1)	DD	V _{DD} Terminal			50	80	μA		
Operating Current (2)	LCD	V _{LCD} Terminal			15		μA		
Hysteresis Voltage	V _H	CE,SCL,DATA,MODE, TNH Terminals		0.3			V		

Note 6) The relation: I $V_{\rm DD}$ - $V_{\rm LCD}$ I \leq 1.3 $V_{\rm DD}$, $V_{\rm LCD}$ \leq $V_{\rm SS}$ must be maintained. Note 7) $V_{\rm 1}$ =1/3 I $V_{\rm DD}$ - $V_{\rm LCD}$ I, $V_{\rm 2}$ =2/3 I $V_{\rm DD}$ - $V_{\rm LCD}$ I

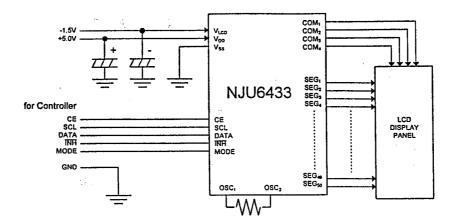


· AC Characteristics

(Ta=25°C, V_{DD} =5.0V, V_{SS} =0V, V_{LCD} = V_{DD} -6.5V)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
"L" Clock Pulse Width	twell	COL Tauminal	0.25			μs
"H" Clock Pulse Width	twclh	SCL Terminal	0.25			μs
Data Set-up Time	tos	COL DATA Taumimala	0.25			μs
Data Hold Time	t _{DH}	SCL, DATA Terminals	0.25			μs
CE Set-up Time	tsce	OF DATA Touringle	1.0			μs
CE Hold Time (1)	thoce	CE, DATA Terminals	1.0			μs
CE Hold Time (2)	thele	CE, SCL Terminals	1.25			μs
Mode Set-up Time	tsmD	OF HODE T	0.25			μs
Mode Hold Time	t _{HMD}	CE, MODE Terminals	0.25			μs
"L" Chip Enable Pulse Width	twcel	CE Terminal	4.0			μs

· Input Timing Characteristics



■ LCD Driving Waveform(1/4DUTY • 1/3BIAS)

APPLICATION CIRCUIT

(Note) The internal display data is undefined when V_{DD} is just turned on.

To avoid the meaningless display, please keep the INH terminal at "L" until proper display data has been transferred.

In order to set the initial condition, 200-bit blank data or the first 200-bit data to be displayed should be transferred.

NJU6433

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.