12-Character 4-Line Dot Matrix Low Power

LCD Controller Driver with key Scan Function

GENERAL DESCRIPTION

■ PACKAGE OUTLINE
The NJU6475B is a Dot Matrix LCD Controller Driver for 12 -character 4 -line with Icon display in single chip. It contains voltage converter, voltage regulator, bleeder resistance, CR oscillator, instruction decoder, character generator ROM/RAM, high voltage operation controller/driver and key scan circuit.
The voltage converter generates (about 8 V) from the supply voltage (3V) and regulated by the regulator. The bias level of LCD driving voltage is generated of high value bleeder resistance and the buffer amplifier matches the impedance. 16-step contrast control function is incorporated for its adjustment. Therefore, simple power supply circuit and

NJU6475B easy contrast adjustment are available. The complete CR oscillator is incorporated without external components for oscillation circuit. The microprocessor interface circuit which operates by 1 MHz , can be selected serial interface.
The character generator ROM consisting of 10,080bits stores 252 kinds of character Font.
Each 160bits CG RAM and Icon display RAM can story 4 kinds of special character to display on the dot matrix display area or 128 kinds of Icon on the display area.

FEATURES

-12-Character 4-Line Dot Matrix LCD Controller Driver

- Maximum 128-Icon Display
- Serial CPU Interface
- Display Data RAM
- 48×8 Bits :Maximum 12-Character 4-Line Display
- Character Generator ROM
- 10,080 Bits: 252 Characters (5×8 Dots)
- Character Generator RAM
- 32×5 Bits : 4 Patterns (5×8 Dots)
- Icon Display RAM
- High Voltage LCD Driver
- 32×5 Bits :Maximum 128-Icon
-Duty \& Bias Ratio
: 37-Common/63-Segment
- Useful Instruction Set
: 1/36 duty 1/7Bias
: Clear Display, Return Home, Display On/Off Control
Display Blink,Cursor Shift, Character Shift
- Common and Segment Driver location Order Select Function (Mode-A, Mode-B)
- Power On Reset Circuit On Chip
- Hardware Reset
- Voltage Regulator On Chip
- Electrical Variable Resistance On Chip
-32-key scan function (8 x 4 Matrix)
- Oscillation circuit On Chip
- Voltage Converter (Doubler,Tripler) On Chip
- Bleeder Resistance On Chip
- Low Oprating Current
\bullet Operating Voltage -2.4 V to 3.6 V (Except For LCD Driving Voltage)
-Package Outline - Bumped-Chip / TCP
-C-MOS Technology

- PAD COORDINATES

PAD No.	PAD	Name	$\mathrm{X}=$ (um)	$\mathrm{Y}=$ (um)	PAD No.	PAD Name		X=(um)	$\mathrm{Y}=$ (um)
	Mode A	Mode B				Mode A	Mode B		
1	ALI-A1	ALI-A1	-6240	-1090	51	NC	NC	5817	1090
2	OSC_{1}	OSC_{1}	-6020	-1090	52	NC	NC	5617	1090
3	OSC_{2}	OSC_{2}	-5775	-1090	53	NC	NC	5417	1090
4	V_{5}	V_{5}	-5479	-1090	54	NC	NC	5217	1090
5	$\mathrm{V}_{\text {ss }}$	Vss	-4979	-1090	55	NC	NC	5017	1090
6	$\mathrm{V}_{\text {50ut }}$	$\mathrm{V}_{\text {SOUT }}$	-4479	-1090	56	NC	NC	4817	1090
7	C2	C2	-3979	-1090	57	NC	NC	4617	1090
8	C2 ${ }^{+}$	C2 ${ }^{+}$	-3479	-1090	58	NC	NC	4417	1090
9	C1	C1	-2979	-1090	59	NC	NC	4217	1090
10	C^{+}	$\mathrm{C1}^{+}$	-2479	-1090	60	NC	NC	4017	1090
11	VD	VD	-1979	-1090	61	NC	NC	3817	1090
12	VR	VR	-1479	-1090	62	NC	NC	3617	1090
13	$V_{\text {ReG }}$	$\mathrm{V}_{\text {Reg }}$	-979	-1090	63	NC	NC	3417	1090
14	TEST	TEST	- 531	-1090	64	SEGS ${ }_{1}$	SEGS ${ }_{1}$	3160	1090
15	SEL	SEL	- 302	-1090	65	COM_{9}	COM_{9}	2780	1090
16	RESET	RESET	- 74	-1090	66	COM_{10}	COM_{10}	2700	1090
17	P/S	P/S	155	-1090	67	COM ${ }_{11}$	COM ${ }_{11}$	2620	1090
18	RS	RS	383	-1090	68	COM_{12}	COM_{12}	2540	1090
19	R/W	R/W	612	-1090	69	COM_{13}	COM_{13}	2460	1090
20	E/SCL	E/SCL	840	-1090	70	COM_{14}	COM_{14}	2380	1090
21	LCD/KEY	LCD/KEY	1069	-1090	71	COM_{15}	COM_{15}	2300	1090
22	REQ	REQ	1298	-1090	72	COM_{16}	COM_{16}	2220	1090
23	DB7/CS	DB7/CS	1536	-1090	73	COM_{25}	COM_{25}	2140	1090
24	$\mathrm{DB}_{6} / \mathrm{SIO}$	DB6/SIO	1773	-1090	74	COM_{26}	COM_{26}	2060	1090
25	DB5	DB5	2010	-1090	75	COM_{27}	COM_{27}	1980	1090
26	DB_{4}	DB_{4}	2247	-1090	76	COM_{28}	COM_{28}	1900	1090
27	DB_{3}	DB_{3}	2484	-1090	77	COM_{29}	COM_{29}	1820	1090
28	DB_{2}	DB_{2}	2721	-1090	78	COM_{30}	COM_{30}	1740	1090
29	DB_{1}	DB1	2958	-1090	79	COM_{31}	COM_{31}	1660	1090
30	DB0	DB0	3195	-1090	80	COM_{32}	COM_{32}	1580	1090
31	K_{0}	K_{0}	3466	-1090	81	SEGM ${ }_{1}$	SEGM_{2}	1500	1090
32	K_{1}	K_{1}	3632	-1090	82	SEG 1	SEG60	1420	1090
33	K_{2}	K_{2}	3903	-1090	83	SEG ${ }_{2}$	SEG59	1340	1090
34	K_{3}	K_{3}	4068	-1090	84	SEG_{3}	SEG58	1260	1090
35	So	So	4244	-1090	85	SEG ${ }_{4}$	SEG57	1180	1090
36	S_{1}	S_{1}	4352	-1090	86	SEG ${ }_{5}$	SEG56	1100	1090
37	S_{2}	S_{2}	4460	-1090	87	SEG ${ }_{6}$	SEG55	1020	1090
38	S_{3}	S_{3}	4568	-1090	88	SEG_{7}	SEG54	940	1090
39	S 4	S_{4}	4676	-1090	89	SEG8	SEG53	860	1090
40	S5	S5	4784	-1090	90	SEG9	SEG52	780	1090
41	S6	S6	4892	-1090	91	SEG ${ }_{10}$	SEG51	700	1090
42	S_{7}	S_{7}	5000	-1090	92	SEG ${ }_{11}$	SEG50	620	1090
43	NC	NC	5217	-1090	93	SEG ${ }_{12}$	SEG49	540	1090
44	NC	NC	5417	-1090	94	SEG_{13}	SEG_{48}	460	1090
45	NC	NC	5617	-1090	95	SEG14	SEG47	380	1090
46	NC	NC	5817	-1090	96	SEG15	SEG46	300	1090
47	NC	NC	6017	-1090	97	SEG_{16}	SEG45	220	1090
48	ALI-A2	ALI-A2	6217	-1090	98	SEG17	SEG44	140	1090
49	ALI-B2	ALI-B2	6217	1090	99	SEG18	SEG_{43}	60	1090
50	NC	NC	6017	1090	100	SEG19	SEG42	- 20	1090

Chip Size $11.22 \times 2.5 \mathrm{~mm}$ (Chip Center $\mathrm{X}=0 \mathrm{um}, \mathrm{Y}=0 \mathrm{um}$)

PAD No.	PAD Name		$\mathrm{X}=(\mathrm{um})$	$\mathrm{Y}=$ (um)
	Mode A	Mode B		
101	SEG_{20}	SEG41	-100	1090
102	SEG ${ }_{21}$	SEG40	- 180	1090
103	SEG_{22}	SEG_{39}	- 260	1090
104	SEG23	SEG38	- 340	1090
105	SEG ${ }_{24}$	SEG_{37}	- 420	1090
106	SEG_{25}	SEG_{36}	- 500	1090
107	SEG ${ }_{26}$	SEG_{35}	- 580	1090
108	SEG ${ }^{7}$	SEG 34	- 660	1090
109	SEG ${ }_{28}$	SEG_{3}	- 740	1090
110	SEG_{29}	SEG_{32}	- 820	1090
111	SEG30	SEG ${ }_{31}$	- 900	1090
112	SEG_{31}	SEG_{30}	-980	1090
113	SEG32	SEG ${ }_{29}$	-1060	1090
114	SEG33	SEG ${ }^{8}$	-1140	1090
115	SEG_{34}	SEG ${ }^{7}$	-1220	1090
116	SEG_{35}	SEG ${ }_{26}$	-1300	1090
117	SEG_{36}	SEG ${ }_{25}$	-1380	1090
118	SEG_{37}	SEG ${ }_{24}$	-1460	1090
119	SEG_{38}	SEG ${ }_{2}$	-1540	1090
120	SEG ${ }_{39}$	SEG ${ }_{2}$	-1620	1090
121	SEG40	SEG ${ }_{21}$	-1700	1090
122	SEG41	SEG_{20}	-1780	1090
123	SEG42	SEG ${ }_{9}$	-1860	1090
124	SEG43	SEG18	-1940	1090
125	SEG44	SEG17	-2020	1090
126	SEG45	SEG ${ }_{16}$	-2100	1090
127	SEG46	SEG ${ }_{15}$	-2180	1090
128	SEG47	SEG14	-2260	1090
129	SEG_{48}	SEG13	-2340	1090
130	SEG49	SEG12	-2420	1090
131	SEG50	SEG 11	-2500	1090
132	SEG51	SEG ${ }_{10}$	-2580	1090
133	SEG52	SEG9	-2660	1090
134	SEG53	SEG ${ }_{8}$	-2740	1090

PAD No.	PAD Name		X=(um)	$\mathrm{Y}=(\mathrm{um})$
	Mode A	Mode B		
135	SEG54	SEG_{7}	-2820	1090
136	SEG55	SEG ${ }^{\text {b }}$	-2900	1090
137	SEG56	SEG 5	-2980	1090
138	SEG57	SEG ${ }_{4}$	-3060	1090
139	SEG58	SEG_{3}	-3140	1090
140	SEG59	SEG 2	-3220	1090
141	SEG60	SEG ${ }_{1}$	-3300	1090
142	SEGM ${ }^{\text {2 }}$	SEGM ${ }_{1}$	-3380	1090
143	COM_{24}	COM_{24}	-3460	1090
144	COM_{23}	COM_{23}	-3540	1090
145	COM_{22}	COM_{22}	-3620	1090
146	COM_{21}	COM_{21}	-3700	1090
147	COM_{20}	COM_{20}	-3780	1090
148	COM_{19}	COM_{19}	-3860	1090
149	COM_{18}	COM_{18}	-3940	1090
150	COM_{17}	COM_{17}	-4020	1090
151	COM_{8}	COM_{8}	-4100	1090
152	COM_{7}	COM_{7}	-4180	1090
153	COM_{6}	COM_{6}	-4260	1090
154	COM_{5}	COM_{5}	-4340	1090
155	COM_{4}	COM_{4}	-4420	1090
156	COM_{3}	COM_{3}	-4500	1090
157	COM_{2}	COM_{2}	-4580	1090
158	COM_{1}	COM_{1}	-4660	1090
159	COMM_{4}	COMM 4	-4740	1090
160	COMM_{3}	COMM_{3}	-4820	1090
161	COMM_{2}	COMM_{2}	-4900	1090
162	COMM_{1}	COMM_{1}	-4980	1090
163	COMS_{1}	COMS_{1}	-5085	1090
164	NC	NC	-5285	1090
165	NC	NC	-5485	1090
167	NC	NC	-5885	1090
168	NC	NC	-6085	1090
169	ALI-B2	ALI-B2	-6240	1090

■ BLOCK DIAGRAM

TERMINAL DESCRIPTION

PAD No.	Symbol	I/O	$F \mathrm{u} n \mathrm{c}$ t i on
11,5	$\mathrm{V}_{\text {do }}, \mathrm{V}_{\text {ss }}$	-	Power Source : V $\mathrm{V}_{\text {d }}=+3 \mathrm{~V}$ GND : $\mathrm{V}_{\text {ss }}=0 \mathrm{~V}$
4	V_{5}	-	LCD driving voltage
2,3	$\begin{aligned} & \mathrm{OSC}_{1}, \\ & \mathrm{OSC}_{2} \end{aligned}$	I/O	System clock terminal Oscillation C and R are incorporated. (Normally Open) For external clock operation, the clock should be input on OSC_{1}.
17	P/S	1	Serial input select terminal (fixed to "L")
18	RS	1	Register selection signal input terminal " 0 " instruction register. (Writing) "1" Data register. (Writing, Reading)
19	R/W	1	Read(R) / Write(W) selection signal input terminal
20	E/SCL	1	Serial clock input terminal
23	DB7/CS	1	Chip select signal
24	$\mathrm{DB}_{6} / \mathrm{SIO}$	I/O	Data input terminal (3-state data bus.)
25-30	$\mathrm{DB}_{0}-\mathrm{DB}_{5}$	1	I/O port output terminal
22	REQ	O	This terminal normally output "L". When confirm a key action, REQ terminal output puls.
21	LCD/KEY	1	Fix to "H" Level
35-42	$\mathrm{S}_{0}-\mathrm{S}_{7}$	O	Key scan signal data output terminal Open Drain Output
31-34	$\mathrm{K}_{0}-\mathrm{K}_{3}$	1	Key scan data input terminal In case of non use, fix to " H ".
$\begin{gathered} 158-151 \\ 65-72 \\ 150-143 \\ 73-80 \end{gathered}$	$\mathrm{COM}_{1}-\mathrm{COM}_{32}$	0	Common signal output terminal
162-159	COMM_{1} - COMM_{4}	O	Icon common display signal output terminal
163	COMS_{1}	O	Static driving common signal output terminal When power down mode V_{d} or $\mathrm{V}_{\text {ss }}$ levels are output.
82-141	SEG $_{1}$ - SEG60	O	Segment signal output terminal
81,142	$\mathrm{SEGM}_{1}, \mathrm{SEGM}_{2}$	O	Icon segment driving signal output terminal

PAD No.	Symbol	I/O	Function
57	SEGS,	0	Static driving segment signal output terminal When power down mode $\mathrm{V}_{\text {oo }}$ or $\mathrm{V}_{\text {ss }}$ level are output.
$\begin{array}{r} 10,9 \\ 8,7 \end{array}$	$\begin{aligned} & \mathrm{C}_{1}^{+} \mathrm{C} 1 \\ & \mathrm{C} 2^{+}, \mathrm{C} 2 \end{aligned}$	I/O	Step up voltage capacitor connecting terminal
6	$V_{\text {sout }}$	0	Step up voltage output terminal
13	$\mathrm{V}_{\text {rea }}$	0	Voltage regulator output terminal Connect the resistor between this terminal and VR terminal.
12	VR	1	Reference voltage for voltage regulator input terminal Connect the resistor between this reference voltage and Voo terminal.
16	$\overline{\text { RESET }}$	1	Reset terminal When the "L" level input over than 1.2 ms to this terminal, the system is reset (at fosc $=180 \mathrm{KHz}$).
15	SEL	1	Common and Segment driver location order select terminal. " 0 " Mode A location (See ■ PAD COORDINATES) "1" Mode B location (See ■ PAD COORDINATES)
14	TEST	1	Maker test terminal This terminal should be connected to $\mathrm{V}_{\text {ss }}$ (or open.)
$\begin{gathered} 43-47 \\ 50-63 \\ 164-168 \end{gathered}$	NC	-	Non connection terminal These terminals are electrically open.
$\begin{array}{r} 169 \\ 49 \\ 1 \\ 48 \end{array}$	ALI-A1 ALI-A2 ALI-B1 ALI-B2	-	Alignment mark These terminals are electrically open.

■ FUNCTIONAL DESCRIPTION

(1) Description for each blocks
(1-1) Register
The NJU6475B incorporates three 8-bit registers, an instruction register (IR), and a Data Register (DR), Key Register (KR). The register (IR) stores an instruction code such as "clear display" and "cursor shift" or address data for Display Data RAM (DD RAM), Character Generator RAM (CG RAM) and Icon Display RAM (MK RAM). The MPU can write the instruction code and address data to the register (IR), but it cannot read out from register (IR). The Register (DR) is a temporary register, the data stored in the Register (DR) is written into DD RAM, MK RAM. A register from these two registers is selected by the register select signal (RS). Register $(K R)$ is an only temporary register for key scan data. This Register (KR) can read out the contents when selected Key signal at "H" signal. And non relation ship with signal of register select (RS).
The Relation ship with RS, R/W register as shown below.
<Table-1> Register selection

RS	R/W	O p e r a t i o n
0	0	R write \& internal register operation mode (Clear Display etc...)
0	1	Read out (KR)
1	0	Write (DR) \& internal register operation mode (DR \rightarrow DD RAM/CG RAM/MK RAM)
1	1	Read out (KR)

(1-2) Address Counter (AC)

The address counter (AC) addresses the DD RAM, CG RAM or MK RAM. When the address setting instruction is written into register (IR), the address information is transferred from register (IR) to the address counter (AC). The selection of DD RAM, CG RAM or MK RAM is also determined by this instruction.
After writing (or reading) the display data to (or from) the DD RAM, CG RAM or MK RAM, the address counter (AC) increments (or decrements) automatically.
(1-3) Display Data RAM (DD RAM)
The display data RAM (DD RAM) consisting of 48×8 bits stores up to 48 -character display data represented in 8-bit code.
The DD RAM address data set in the address counter (AC) is represented in Hexadecimal code.

(Example) DD RAM Address "08"

(1-3-1) The relation between DD RAM address and display position on the LCD
-12-Characters 4-Line Display

	1	2	3	4	5	6	7	8	9	10	11	12	\leftarrow Display Position
1st Line	00	01	02	03	04	05	06	07	08	09	OA	OB	\leftarrow DD RAM Address (Hexadecimal)
2nd Line	10	11	12	13	14	15	16	17	18	19	1A	1B	
3rd Line	20	21	22	23	24	25	26	27	28	29	2A	2B	
4th Line	30	31	32	33	34	35	36	37	38	39	3A	3B	

When the display shift is performed, the DD RAM address changes as follows:
[Left shift display]

$(00) \leftarrow$| 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | $0 A$ | $0 B$ | 00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(10) \leftarrow$ | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1 A | 1 B |
| $(20) \leftarrow$ | 10 | | | | | | | | | | |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 2 A | 2 B | 20 |
| $(30) \leftarrow$ | $\leftarrow 41$ | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 3 A | 3 B |
| | 30 | | | | | | | | | | |

[Right shift display]

0 B	00	01	02	03	04	05	06	07	08	09	0 A
1 B	10	11	12	13	14	15	16	17	18	19	1 A
2 B	20	21	22	23	24	25	26	27	28	29	$2 \mathrm{~A})$
3 B	30	31	32	33	34	35	36	37	38	39	3 A
$(2 \mathrm{~B})$											

(1-4) Character Generator ROM (CG ROM)
The Character Generator ROM (CG ROM) stores 5×8 dots character pattern represented in 8-bit character code. The capacity is up to 252 kinds of 5×8 dots character pattern.
The correspondence between character code and standard character pattern of NJU6475B is shown in table 2. User defined character patterns (Custom Font) are also available by mask option. (in this case, the address (20) н are using for "Space Pattern".)
＜Table－2＞The Correspondence Between Character Code
and Standard Character Pattern（ROM Version－02）

		Upper 4 bit（Hexadecimal）															
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Lower 4bit (Hexadecimal)	0	CG RAM （01）	年＊＊！			＊＊＊							＊＊＊＊＊	＊＊：	$* *$ $\cdots *$ $* * *$		
	1	（02）		！	\％	¢＊＊＊	\cdots	＊＊＊：	＊＊＊：	＊＊＊	＊＊：	＊：				\cdots $\cdots \cdots$ $\cdots \cdots:$	2＊＊！
	2	（03）		\vdots				$\sum_{\substack{\text { ¢ }}}$	$\sum_{0} 0^{*}$			$\stackrel{* * *}{*}^{*}$	－$\stackrel{*}{*}$	\vdots \vdots ：		¢	
	3	（04）					$\begin{gathered} \underbrace{* * *}_{* * *} \\ * * \end{gathered}$	$\stackrel{5}{* * *}_{* * *}$	$\begin{aligned} & * * \\ & * * * \\ & * * * \end{aligned}$		$\sum_{*=*}^{* * *}$	\ldots					$\pm * * *$
	4				－		＊＊＊＊	＊＊＊		＊＊	$\begin{array}{\|c\|} \hline * \\ \sum_{* * * *}^{*} \\ \vdots \end{array}$	${ }^{*}$＊				\sum_{\vdots}	$\stackrel{* * *}{*}$
	5					年＊＊＊		：＊＊＊	$\sum_{\text {c．}} \stackrel{\vdots}{1}$			：	\cdots	\cdots	\％	\cdots	
	6			$\begin{aligned} & * * * \\ & \vdots * * * * \end{aligned}$		等＊＊＊	－	$*^{* *}$	\sum^{\vdots}.		$\underbrace{* * *}$	＊＊＊＊	＊＊＊＊		＊＊＊＊	${ }_{\square}^{* * *}$	\％＊＊＊
	7			\because			\cdots	（\％＊＊	${ }_{\square}^{0}$	$\underbrace{* * *}_{* * *}$							
	8			$\stackrel{*}{*}$		¢		号＂			${ }_{\substack{* \\ * \\ *=0}}$	\cdots		＊	！	$\cdots{ }_{8}^{* *}$	＊＊＊＊
	9							\％	\cdots		$\vdots_{*=0}^{\text {E．}}$	＊＊＊	－\％	－	\％	＊＊	\％
	A		$\vdots_{*=0}^{*}$	$\stackrel{*}{*} \times$ ：	$\begin{aligned} & \text { : } \\ & \text { : } \end{aligned}$	\％＊＊＊＊＊＊＊＊＊）		\％			\cdots			$\cdots \stackrel{n}{*}$		\％	＊＊＊＊
	B		$\dot{!}^{* * * *}$	＊＊＊＊	：			$\stackrel{8}{8}$	＂	$*$ \because \vdots		＊＊	－			$\stackrel{*}{*}$＊	\％＊＊＊
	C		＊＊＊	＊＊	$\cdots *$	\％		＂	\％	$\begin{gathered} \because \\ \vdots \\ \vdots \\ \vdots \end{gathered}$		\％	＊＊ \cdots \cdots		$\underbrace{+\infty \times}$		
	D		\％	＊＊＊＊＊	＊＊＊＊＊	为：	＊\％	：＂：	＂：	¢		＊＊＊		\cdots	\ldots	范	\cdots
	E			\％		¢	$*^{*}{ }^{\text {a }}$	$\stackrel{\text { ¢ }}{\substack{* *}}$	＊＊	＊＊＊		＊＊＊		～\％．．	$\cdots *$	$\underbrace{* *}_{* * *}$	
	H			＊＊＊＊	＊＊＊＊			$\underbrace{* *}_{*=0}$	＊＊＊＊＊＊＊＊	\％＊！		：：	\cdots	\cdots	$\stackrel{3}{\square}$	\cdots	

(1-5) Character Generator RAM (CG RAM)
The Character Generator RAM stores any kinds of character pattern in 5×8 dots written by the user program to display user's original character pattern. The CG RAM can store 4 kinds of character in 5×8 dots mode.
To display user's original character pattern stored in the CG RAM, the address data (00) - -(03) ${ }_{\text {н }}$ should be written to the DD RAM as shown in Table-3.
<Table-3> Correspondence of CG RAM address, DD RAM character code and CG RAM character pattern (5 $\times 8$ dots)

Notes: 1. Character code bit 0,1 correspond to the CG RAM address bit 3,4 (2bits ; 4patterns).
2. CG RAM address 0 to 2 designate character pattern line position. The 8 th line should be " 0 ". If there is " 1 " in the 8th line, but bit "1" is always displayed on the cursor position regardless of cursor existence.
3. Row position character pattern correspond to CG RAM data bits 0 to 4 are shown above.
4. CG RAM character patterns are selected when character code bits 2 to 7 are all " 0 " and these are addressed by character code bits " 0 " and "1".
5. "1" for CG RAM data corresponds to display on and "0" to display off.

NJU6475B

(1-6) Icon display RAM (MK RAM)
The NJU6475B can display maximum 128 Icons.
The Icon display can be controlled by writing the data into MK RAM corresponding to the Icons.
The relation between MK RAM address and Icon display position is shown in Table-4.

<Table-4> Correspondence among Icon Position, MK RAM Address and Data

Notes : 1. When the Icon display function using, the system should be initialized by the software initialization
Because the MK RAM is not initialized by the power on reset and hardware.
2. The cross-points between segments (SEGM 1 and SEGM ${ }_{2}$) and commons (COMM 1 to COMM_{4} and COM_{2} to COM_{32}) are always set "OFF" level.
3. In the table 4 , * mark are invalid, therefore both of " 0 " or " 1 " can be written but these are no meaning.

(1-7) Timing generator

The timing generator generates a timing signals for the DD RAM, CG RAM and MK RAM and other internal circuits. RAM and timing for the display and internal operation timing for MPU access are separately generated, so that may not interfere with each other.
Therefore, when the data write to the DD RAM for example, there will be undesirable influence, such as flickering, in areas other than display area.
(1-8) LCD Driver
LCD Driver consists of 37 -common driver and 63-segment driver. The character pattern data are latched to the addressed segment-register respectively.
This latched data controls display driver to output LCD driving waveform.
(1-9) Cursor Blinking control circuit
This circuit controls cursor On / Off and cursor position character blinking. The cursor or blinking appear in the digit locating at the DD RAM address set in the address counter (AC). When the address counter is (08)н, a cursor position is shown as bellow.

	AC_{6}	AC_{5}	AC_{4}	AC_{3}	AC_{2}	AC_{1}	AC_{0}
AC	0	0	0	1	0	0	0

4-Line Display

	1	2	3	4	5	6	7	8	9	10	11	12	\leftarrow Display position
1st Line	00	01	02	03	04	05	06	07	$\underline{08}$	09	0A	OB	\leftarrow DD RAM Address
2nd Line	10	11	12	13	14	15	16	17	${ }_{18}$	19	1A	1B)
3rd Line	20	21	22	23	24	25	26	27	28	29	2A	2B	
4th Line	30	31	32	33	34	35	36	37	38	39	3A	3B	

Note : The cursor or blinking also appear when the address counter (AC) selects the CG RAM or the MK RAM. But the displayed cursor and blinking are meaningless.
If the AC stores the CG or MK RAM address data, the cursor and blinking are displayed in the meaningless position.
(2) Power on Initialization by internal circuits
(2-1) Internal Reset circuits Initialization
The NJU6475B is automatically initialized by internal power on initialization circuits when the power is turned on. In the internal power on initialization, following instructions are executed.
During the Internal power on initialization, the busy flag (BF) is "1" and this status is kept during 6 ms (fosc $=180 \mathrm{KHz}$) after Vod rose to 2.4 V .

Initialization sequence

Note : If the condition of power supply rise time described in the Electrical Characteristics is not satisfied, the internal Power On Initialization will not performed.
In this case, the software initialization by MPU is required.

(2-2) Hardware Initialization

The NJU6475B prepares RESET terminal to initialize the all system.
When the "L" level is input over 1.2 ms to the RESET terminal, reset sequence is executed. In this time, the busy signal is output during 6 ms ($\mathrm{fosc}=180 \mathrm{KHz}$) after RESET terminal went to " H ".
-Timing Chart

(3) Instruction

The NJU6475B incorporates two registers, an Instruction Register (IR) and a Data Register (DR). These two registers store control information temporarily to allow interface between NJU6475B and MPU or peripheral IC operating different cycles. The operation of NJU6475B is determined by this control signal from MPU.
The control information includes resister selection signals (RS), Read / Write signals (R/W) and data signal (SIO).
<Table-5> shows each instruction and its operating time

Instruction	0 d e										Description	$\begin{array}{\|r\|} \hline \begin{array}{r} \text { Execute Time } \\ (\text { fcp or fosc } \\ (M A X) \end{array} \\ =180 \mathrm{kHz}) \end{array}$
	RS	R/W	DB_{7}	DB6	DB5	DB_{4}	DB_{3}	DB_{2}	DB1	DBo		
Maker Test	0	0	0	0	0	0	0	0	0	0	All "0" code is using for maker testing.	-
Clear Display	0	0	0	0	0	0	0	0	0	1	Clears Display and sets RAM address (00) in AC.	5.42 ms
Return Home	0	0	0	0	0	0	0	0	1	*	Sets RAM address (00) in $^{\text {in }}$ and returns shifted display to original position. RAM contents are not changed	83.4us
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	sets cursor move direction and display shift operation which are performed at data read/write.	Ous
$\begin{array}{\|} \hline \text { Display ON/OFF } \\ \text { Control } \end{array}$	0	0	0	0	0	0	1	D	C	B	Set Display Control On /Off (D), cursor On /Off (C) and character blinking (B) at cursor position.	Ous
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	*	*	moves cursor and shifts display without changing RAM(DR) contents.	$\begin{array}{\|c} \hline \text { Cursor: } \\ \text { 83.4us } \\ \text { Display: Ous } \end{array}$
Function Set	0	0	0	0	1	*	*	*	*	PD	Sets Interface data length (DL) and power down mode (PD).	Ous
Electronic Volume Register Set	0	0	0	1	*	*	Electronic volume				Sets Vreg data to EVR control register.	Ous
RAM Address Set	0	0	1	Address							Sets RAM Address. After this instruction, the data is transferred to/from RAM.	83.4us
Key Data Read	0	1	Read Data (KEY DATA)								When LCD/Key= "1", reads key data out.	Ous
Data Write to CG or DD or MK RAM	1	0	*	Writ	e Da	ata	(DD	RAM)			Writes data into DD or CG or MK RAM.	83.4us
* : Don't care	I/D=1:Increment, I/D=0:Decrement, S=1:Include Display Shift, S/C=1:Shift Display, $\mathrm{S} / \mathrm{C}=0$:Cursor shift, R/L=1:Shift to Right, $R / L=1$:Shift left, $P D=0$:Power Down Mode PD=1:Cancel Power Down Mode										DD RAM : Display data RAM CG RAM : Character generator RAM MK RAM : Icon display RAM AC : Address counter use for DD, CG and MK RAM	When FRQ is changed, the execute time is also changed.

Note : If the oscillation frequency is changed, the execution time is also changed.
(3-1) Description of each instructions
(a) Maker Test

| RS | R / W | DB_{7} | DB_{6} | DB_{5} | DB_{4} | DB_{3} | DB_{2} | DB_{1} | DB_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Code | | | | | | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

(b) Clear Display

| | RS | R / W | DB_{7} | DB_{6} | DB_{5} | DB_{4} | DB_{3} | DB_{2} | DB_{1} | DB_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Code | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Clear Display Instruction is executed when the code "1" is written into DBo.
When this instruction is executed, the space code (20) is written into every DD RAM address, then the DD RAM (00) н is set into address counter and I/D of entry mode is set as increment mode. If the cursor or blink are displayed, they are returned to the left end of the 1st line on the LCD panel.
In addition, S of entry mode is not changes and contents of MK RAM and CG RAM are also not changed.
Note : The character code $(20)_{н}$ must be blank code in the user defined character pattern (Custom font).
(c) Return Home

	RS	R/W	DB_{7}	DB6	DB5	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB
Code	0	0	0	0	0	0	0	0	1	*

Return Home instruction is executed when the code "1" is written into DB.
When this instruction is executed, the DD RAM address (00) ${ }_{\mu}$ is set into the address counter. Display is returned to its original position if shifted, the cursor or blink are returned to the left end of the 1 st line on the LCD if the cursor or blink are operating. The DD RAM contents do not change.
(d) Entry Mode Set

	RS	R/W	DB_{7}	DB6	DB5	DB_{4}	DB_{3}	DB_{2}	DB1	DB0
Code	0	0	0	0	0	0	0	1	I/D	S

Entry Mode Set instruction which sets the cursor moving direction and display shift On/Off, is executed when the code "1" is written into DB_{2} and codes of (I/D) and (S) are written into $\mathrm{DB}_{1}(\mathrm{I} / \mathrm{D})$ and $\mathrm{DB}_{0}(\mathrm{~S})$. (I/D) sets the address increment or decrement, and the (S) sets the entire display shift at the DD RAM writing.

I/D	F u n c t i on
1	Address increment : The address of the DD RAM or CG RAM increment (+1) when the read/write operation, and the cursor or blink moves to the right.
0	Address decrement : The address of the DD RAM or CG RAM decrement (-1) when the read/write operation, and the cursor or blink moves to the left.
S	$F \mathrm{u}$ n c t i 0 n
1	Entire display shift. The shift direction is determined by I/D. : shift to left at I/D=1 and shift to the right at the $I / D=0$. The shift is operated only for the character, so that it looks as if the cursor stands still and display moves. The display does not shift when reading from DD RAM and writing/reading into/from CG RAM.
0	The display does not shift.

(e) Display ON/OFF Control

	RS	R/W	DB_{7}	DB_{6}	DB5	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB ${ }_{0}$
Code	0	0	0	0	0	0	1	D	C	B

Display ON/OFF control instruction which controls the whole display ON/OFF, the cursor ON/OFF and the cursor position character blink, is executed when the code "1" is written into DB_{3} and codes of (D), (C) and (B) are written into $\mathrm{DB}_{2}(\mathrm{D}), \mathrm{DB}_{1}(\mathrm{C})$ and $\mathrm{DB}_{0}(\mathrm{~B})$, as shown below.

D	F u n c t i o n
1	Display On
0	Display Off. In this mode, the display data remains in the DD RAM so that it is retrieved immediately on the display when the D changes to 1.

C	F u n c t i o n
1	Cursor On. The cursor is displayed by 5 dots on the 8th line.
0	Cursor Off. Even if the display data write, the I/D etc does not change.
B	$F \mathrm{l}$
1	The cursor position character is blinking. Blinking rate is 480 ms at fosc $=180 \mathrm{KHz}$. The cursor and the blink can be displayed simultaneously.
0	The character does not blink.

Character Font 5×7 Dots
(1) Cursor Display Example

Alternating Display

(2) Brink Display Example
(f) Cursor Display Shift

The cursor /display shift instruction shifts the cursor display to the right or left without writing or reading display data. This function is used to correct or search the display. The cursor moves to the 2nd line after the 12 nd digit of the 1 st line. Notice that 1 st to 3 rd line displays shift at the same time. When the displayed data are shifted repeatedly, each display moves in only same line. The 2nd and 3rd line display do not shift into the 1st and 2nd line.
The contents of address counter (AC) does not change by operation of only the display shift.
This instruction is executed when the code "1" is written into DB4 and the codes of (S/C) and (R/L) are written into $\mathrm{DB}_{3}(\mathrm{~S} / \mathrm{C})$ and $\mathrm{DB}_{2}(\mathrm{R} / \mathrm{L})$, as shown below.

S/C	R/L	F F n c t i o n
0	0	Shift the cursor position to the left ((AC) is decremented by 1).
0	1	Shift the cursor position to the right ((AC) is incremented by 1).
1	0	Shifts the entire display to the left and the cursor follows it.
1	1	shifts the entire display to the right and the cursor follows it.

(g) Function Set

	RS	R/W	DB_{7}	DB6	DB5	DB_{4}	DB_{3}	DB_{2}	DB1	DB 0	
Code	0	0	0	0	1	*	*	*	*	PD	* = Don't Care

Function set instruction which sets the interface data length and power down is executed, when the code " 1 " is written into DB_{5} and (PD) is written into DB_{0}, as shown below.

When the power down mode is set, the display turns off automatically. Afterward, when the power down mode is reset, the display is off continuously.
The display appears by the display on instruction.

PD	F u n c t i o n
1	Power down mode off (Normal operation)
0	Power down mode on (the display goes to off automatically.)

(h) Set Electronic Volume Register

Contrast Control instruction which adjusts the contrast of LCD, is executed when the code "1" is written into DB_{6} and the codes of C_{0} to C_{3} are written into DB_{0} to DB_{3} as shown below.
The contrast of LCD can be adjusted one of 16 voltage stage by setting 4 bit register.
Set the binary code "0000" when contrast control unused.

C_{3}	C_{2}	C_{1}	C_{0}	$\mathrm{~V}_{L C D}$	
0	0		0	0	low
1		\vdots			
	1		1	1	high

(i) Set RAM Address

	RS	R/W	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB1	DBo
Code	0	0	1	A	A	A	A	A	A	A

The RAM address set instruction is executed when the code "1" is written into DB_{7} and the address is written into DB_{6} to DB_{0} as shown above.
The address data (DB_{6} to DB_{0}) is written into the address counter (AC) by this instruction.
After this instruction execution, the data writing/reading is performed into/from the addressed RAM.
The RAM includes DD RAM, CG RAM and MK RAM and these RAMs are shared by addressed as shown below.

RAM Address

DD RAM	1st Line	$:$	$(00)_{H}$	to	$(0 \mathrm{~B})_{H}$
DD RAM	2nd Line	$:$	$(10)_{H}$	to	$(1 \mathrm{~B})_{H}$
DD RAM	3rd Line	$:$	$(20)_{H}$	to	$(2 \mathrm{~B})_{H}$
DD RAM	4th Line	$:$	$(30)_{H}$	to	$(3 \mathrm{~B})_{H}$
CG RAM	4 Characters :	$(40)_{H}$	to	$(5 \mathrm{~F})_{H}$	
MK RAM	128 Icons	$:$	$(60)_{H}$	to	$(7 \mathrm{~F})_{H}$

(j) Write Data to CG, DD or MK RAM
-Write Data to DD RAM

-Write Data to CG or MK RAM

Write Data to RAM instruction is executed when the code " 1 " is written into (RS) and code " 0 " is written into (R/W).
By the execution of this instruction, the data is written into RAM. The selection of RAM is determined by the previous instruction.
After this instruction execution, the address increment (+1) or decrement (-1) is performed automatically according to the entry mode set.
(3-2) Initialization using the internal reset circuit
When internal reset operates for initialization, the function set, Display ON/OFF Control and Entry Set instruction must be executed before the data input as shown below.

(3-3) Initialization by instruction
If the power supply conditions for the correct operation of the internal reset circuits are not met, the NJU6475B must be initialized by instruction.

(4) Power down Function

NJU6475B incorporates the power down mode to reduce the operating current.
The power down mode is set/reset by the function set instruction.
In the power down mode, all the character display and Icon display turn off and only static display operation is available.
The status of internal circuits at the power down mode is shown below.
-Main oscillator stops and sub oscillator for the static display starts the operation.
-Voltage converter, Key Scan, Voltage Regulator, Voltage follower (OP-AMP) are stopped.
-The contents of DD, CG, MK RAM are kept.
(5) LCD Display
(5-1) Power Supply for LCD Driving
NJU6475B incorporates voltage converter to generate the LCD driving voltage which is adjusted by the voltage regulater and the EVR.
(a) Voltage Converter
-Voltage Tripler
By connecting capacitor between $\mathrm{C1}^{+}$and $\mathrm{C1}_{1}, \mathrm{C}^{+}$and $\mathrm{C} 2, \mathrm{~V}_{\text {ss }}$ and $\mathrm{V}_{\text {5out }}$ respectively, two times negative voltage of $\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}$ output from $\mathrm{V}_{\text {sout }}$.
-Voltage Doubler
By connecting capacitor between C^{+}and $\mathrm{C}^{2}, \mathrm{~V}_{\text {ss }}$ and $\mathrm{V}_{\text {sout }}$ respectively, and connecting the C^{+} terminal to C^{+}terminal, and $\mathrm{C} 1^{-}$terminal being open, negative voltage of $\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {ss }}$ output from V_{5004}.

Voltage Doubler
(b) Voltage Regulator Voltage Regulator incorporates a OP-AMP which is supplied $V_{D D}$ and $V_{50 U T}$, and a reference voltage source ($\mathrm{V}_{\text {ref }}$).
By setting the VR level by connecting $R a$ and $R b$, the regulator which amplifies $V_{\text {reF }}$, outputs the LCD driving voltage to the $\mathrm{V}_{\text {REG }}$ terminal.
Therefore the LCD driving voltage can be output between $V_{D D}$ and $V_{\text {reg }}$ by setting.

$$
V_{\text {reg }}=(1+\mathrm{Rb} / \mathrm{Ra}) \mathrm{V}_{\text {ref }} \text { in condition, } \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V},\left|\mathrm{~V}_{\text {ReG }}\right|<\left|\mathrm{V}_{\text {SOUT }}\right|
$$

The EVR functions $V_{\text {ref }}$ value adjustment from 1 st step to 16 th by a step when the 4 bit data write into the EVR register by the instruction.
Set the EVR register to (00) н when the EVR function is unused. Use variable resistances to external to the external resistances Ra, Rb and thermistor if need due to the voltage reference $\mathrm{V}_{\text {rEF }}$ is changed by the lot and operating temperature.
Take care the noise input on the VR terminal because of it is designed with high impedance. Short wiring should be required to avoid the noise input, if necessary.
[The Voltage Reference Vaef Characteristics]

$$
\text { Supply Voltage }: V_{D D}=0 \mathrm{~V}, \mathrm{~V}_{S S}=-3 \mathrm{~V} \quad \text { Temperature }: 25^{\circ} \mathrm{C}
$$

[The LCD Operating Voltage $\mathrm{V}_{\text {reg }}$ Characteristics]

Supply Voltage $: V_{D D}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Ss}}=-3 \mathrm{~V}$,	Voltage Tripler Output	$: \mathrm{V}_{\text {50Ut }}=-9 \mathrm{~V}$	
External Resistances $: \mathrm{Ra}=180 \mathrm{~K} \Omega, \mathrm{Rb}=820 \mathrm{~K} \Omega$	Temperature	$: 25^{\circ} \mathrm{C}$	
Used Formulation	$: \mathrm{V}_{\text {REG }}(\mathrm{XX})_{H}=(1+820 \mathrm{k} \Omega / 180 \mathrm{k} \Omega)$	$\mathrm{V}_{\text {REF }}(\mathrm{XX})_{H}$	

(c) Bleeder Resistance

Each LCD driving voltage $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}\right)$ is generated by the high impedance bleeder resistance buffered by voltage follower OP-AMP to get a enough display characteristics with low operating current. The bleeder resistance is set $1 / 7$ bias suitable for $1 / 36$ duty by $5 \mathrm{M} \Omega$ resistance in total.
The capacitor connected between V_{5} and V_{DD} is needed for stabilizing V_{5}. The determination of the each capacitance of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} generating for LCD operating voltage is required to operate with the LCD panel actually.
The capacitance for the typical application is shown below:

LCD Driving Voltage vs Duty		
Power	Duty Ratio	$1 / 36$
Supply	Bias	$1 / 7$
V_{LCD}		$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{5}$

$\mathrm{V}_{\text {LCD }}$ is the maximum amplitude for LCD driving voltage.

Typical application for LCD operating voltage generation
Note : Take care the noise into the VR terminal as designed with high impedance.
Short wiring or sealed wiring are required to avoid the noise, if necessary.
(5-2) Relation between oscillation frequency and LCD frame frequency
As the NJU6475B incorporates oscillation capacitor and resistor for CR oscillation, 180 KHz oscillation is available without any external components. (1 Clock $=5.56$ us)

1/36 Duty

1 frame $=5.56$ (us) $\times 62 \times 36=12.4(\mathrm{~ms})$
Frame frequency $=1 / 12.4(\mathrm{~ms})=80.6(\mathrm{~Hz})$
(6) Key Scan Circuit
(6-1) Key scan timing chart

(6-2) Key Scan

1. KEYCHECK signal always operates to check the status of keys excepting for power down mode.
2. When Key signal (K_{0} to K_{3}) 3 times detected continuously at rise up edge of KEYCHECK (inner side NJU6475), key Scan circuit performs output request signal (REQ terminal) rise to "H" and simultaneously key input information transmit to CPU. Its useful for anti-chattering. At the same time of REQ signal output, the key register status is "00010000 00000000" (Non Key Input) automatically. Key input terminal (Ko to K_{3}) are " H " in normal, then turn to "L" when Key input.

In case of request signal "H", When detects 3 times continuously key released status, request signal will be "L".

Fig. 2
3. When the request signal is detected, CPU should be LCD / KEY to " H " and read out key data by instruction. 16-bit key data synchronizing to "SCL" (SCL terminal) is read out to CPU.
(1st time output key data was fixed as "00010000 00000000")
keyscan operation start from the next rising edge of SCL after the end of key data read out opration.

Fig. 3
4. The key data are gotten from 4 terminals (K_{0} to K_{3}) at each timing of key scan signals (S_{0} to S_{7}). The detected data are up dating anytime and stores to key register.

Fig. 4 End of Key Scan

- Key scan timing : 0.45 ms (fosc $=180 \mathrm{KHz}, \mathrm{MAX}=0.64 \mathrm{~ms}$)
- Pulth width $:$:45us (fosc $=180 \mathrm{KHz}, \mathrm{MAX}=64 u s)$
(6-3) Key scanning timing
Key status is gotten at $3 / 4$ port timing of $t_{k p}$ during "L" period of S_{0} to S_{7}.

So
S_{1}

(6-4) The format of detection

1st Byte
MSB

0	0	0	1	$\mathrm{~K}_{\mathrm{L} 2}$	$\mathrm{~K}_{\mathrm{L} 2}$	$\mathrm{~K}_{\mathrm{L} 1}$	$\mathrm{~K}_{\mathrm{L}}$

Fix
$\mathrm{K}_{\llcorner 3}$ to $\mathrm{K}_{\llcorner 0}$: Corresponds to K_{3} to K_{0}

2nd Byte

MSB							
K_{H7}	K н	$\mathrm{K}_{\text {H5 }}$	$\mathrm{K}_{\mathrm{H} 4}$	$\mathrm{K}_{\text {н }}$	$\mathrm{K}_{\text {H2 }}$	$\mathrm{K}_{\mathrm{H} 1}$	K ${ }^{0}$

$\mathrm{K}_{\text {н7 }}$ to $\mathrm{K}_{\text {но }}$: Corresponds to S_{7} to S_{0}
(For Example)

1st								d							
MSB							LSB	SB							LSB
0	0	0	1	1	1	0	0	0	0	0	0	0	1	0	0

(6-5) Key roll over input
NJU6475B can be accepted the key roll over input.
In case of key roll over input, the output results are shown below;
-Connecting same S_{\times}signal line at multiple key push.

When key-in shown above case, the data contents are "00011100" "00000100".
-The case of connecting different S_{x} signal line at multiple key push (1)

When key-in shown above case, the data contents are "00010100" "00010100".
-The case of connecting different $S \times$ signal line at multiple key push (2)

When key-in like as shown above, the data contents are "00010101" "00010100". In this case, the result will be same, at each key-in shown below.
[Case 1]

[Case 3]

[Case 5]

[Case 2]

[Case 4]

[Case 6]
(6-6) The inner composition of Key Scan circuit
The inner composition of key scan circuit shown below :

NJU6475B Inner Circuit

-In case of non input the key each terminal status shown below:
S_{0} to S_{7} : The status of Nch FET output side is ON, output result is "L".
K_{0} to K_{3} : The status is " H " by pull-up resistance.
-When any key key-in, Kx of key-in side turn to "L" and it can confirms.
-Input terminal (K_{0} to K_{3}) are composed by schmitt inverter input method.
(7) Interface with MPU

Interface circuit of NJU6475B can be connected to serial by turn to "L" P/S terminal on shown below serial data timing. And DB_{0} to DB_{5} can be use to output port.

Notes : RS, R/W, LCD/KEY requires setting before CS fall down. RS is unrelated to read out of key data and writing of port data.

Serial interface circuit is in operation at CS is "L".
When SCL rises, input data was lead, and rises CS case loading input data.
When the input data was less than 16 bits, input data will be invalid at rises CS. And so on equal or over than 16 bits case, rear side total 16 bits are effectiveness. The input data should be total 16 bits.
The data of read/write are composed MSB first.

－Data format

The data formatted by 2 byte form at read／write．
When writing data consists LCD data and port data．
The using data in write mode means one of key data．
In write mode of data format，1st byte means recognition data of LCD data and Port data．
In＂0110 0000＂（fixed）selects LCD data，in＂0110 0001＂（fixed）selects Port data．
The data of 2nd byte consists each data contents．
When the 1st byte of MSB 4 bit data are not＂ 0110 ＂，in this case the input data will be invalid．

					D_{7}	D6	D5	D4	D_{3}	D_{2}	D_{1}	Do	DB7	DB6	DB5	DB4	DB3	DB_{2}	DB1	DBo	＊
	$\begin{array}{\|l\|} \mathrm{LCD} / \\ \mathrm{KEY} \end{array}$	RS	R／W		1st Byte								2nd Byte								
$\left\lvert\, \begin{array}{\|l\|l\|} \text { LCD } \\ \text { Data } \end{array}\right.$	0	0	0		Higher Selected Bit (0110)				Lower Selected Bit (0000)				LCD Data（Instruction）								Instruction Execution Time
$\left\lvert\, \begin{array}{l\|l\|} \text { LCD } \\ \text { Data } \end{array}\right.$	0	1	0		$\begin{aligned} & \text { Higher } \\ & \text { Selected Bit } \\ & (0110) \end{aligned}$				$\begin{aligned} & \text { Lower } \\ & \text { Selected Bit } \\ & (0000) \end{aligned}$				LCD Data（RAM Data）								Instruction Execution Time
$\begin{array}{\|r\|r\|} \text { PORT } \\ \text { Data } \end{array}$	0	＊	0		$\begin{aligned} & \text { Higher } \\ & \text { Selected Bit } \\ & (0110) \end{aligned}$				$\begin{aligned} & \text { Lower } \\ & \text { Selected Bit } \\ & (0001) \end{aligned}$				Output Port（Set＂L＂＝0，＂H＂＝1）								Instruction Execution Time
$\left\lvert\, \begin{array}{\|l\|l\|} & \text { KEY } \\ \text { Data } \end{array}\right.$	1	＊	1		$\begin{aligned} & \text { Selected Bit } \\ & (0001) \end{aligned}$				$\begin{gathered} \text { Key } \\ \cdots \\ \therefore \\ \Gamma \\ \omega \end{gathered}$	$\begin{gathered} \text { Data } \\ \hdashline \cdots \\ \sim \\ N \end{gathered}$	a 1	－－－ г － 0	Key - ス I V	Data ス エ の の	2 \cdots ス エ \cdots	I I －	ス エ ¢	エ	エ	-- I	

＊：Invalid Data
Notes：The instruction requires execution time after transmit 16 bit data．After transmit data can not transmit continuously

MAXIMUM ABSOLUTE RATINGS

P A R A M E T ER	SYMBOL	RATINGS	UNIT	N O T E
Supply Voltage (1)	V_{DD}	$-0.3 \sim+7.0$	V	
Input Voltage	V_{t}	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V	
Operating Temperature	Topr	$-30 \sim+80$	${ }^{\circ} \mathrm{C}$	
Storage Temperature	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$	

Note-1 : If the LSI are used on condition above the absolute maximum ratings, the LSI may be destroyed. Using the LSI within electrical characteristics is strongly recommended for normal operation. Use beyond the electric characteristics conditions will cause malfunction and poor reliability.
Note-2 : Decoupling capacitor should be connected between $V_{D D}$ and $V_{s s}$ due to the stabilized operation for the voltage converter.
Note-3 : All voltage value are specified as $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$.
The relation : $V_{D D}>V_{S s}$, $V_{D D}>V_{S s} \geq V_{\text {5out }}, V_{s s}=0 V$ must be maintained.

■ ELECTRICAL CHARACTERISTICS (Von $=2.4 \sim 3.6 \mathrm{~V}, \mathrm{Ta}=-20 \sim+75^{\circ} \mathrm{C}$)

PARAMETER		SYMBOL	CON	DITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input Voltage 1		$\mathrm{V}_{\text {H1 }}$	(OSC1, Exce	terminals $\mathrm{K}_{0} \sim K_{3}$)	$0.8 \mathrm{~V}_{\text {Do }}$	-	$V_{\text {Do }}$	V	4
		V_{11}	(OSC1, Exce	terminals $\mathrm{K}_{0} \sim K_{3}$)	$V_{\text {ss }}$	-	$0.2 \mathrm{~V}_{\text {D }}$	V	4
Input Voltage 2		$\mathrm{V}_{\mathrm{H} 2}$	(Application to	erminals $\mathrm{K}_{0} \sim \mathrm{~K}_{3}$)	$0.8 \mathrm{~V}_{\text {Do }}$	-	$\mathrm{V}_{\text {D }}$	V	4
		$\mathrm{V}_{\mathrm{L} 2}$	(Application to	erminals $\left.\mathrm{K}_{0} \sim \mathrm{~K}_{3}\right)$	Vss	-	$0.2 \mathrm{~V}_{\text {od }}$	V	4
Input Voltage 3		$\mathrm{V}_{\text {нз }}$	(Applicate	terminal OSC1)	Voo-0.5	-	$V_{\text {Do }}$	V	4
		V_{12}	(Applicate	terminal OSC1)	Vss	-	0.5	V	4
Output Voltage 1		Vон1	-lor $=0.205$	$\mathrm{nA}, \mathrm{V}_{\mathrm{Do}}=3.0 \mathrm{~V}$	2.0	-	-	V	5
		Volt	$\mathrm{loL}=1.6 \mathrm{~m}$	$\mathrm{A}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-	-	0.5	V	5
Output Voltage ($\mathrm{So}_{0} \sim \mathrm{~S}_{7}$)		Vot2	$\mathrm{loL}=300$			-	0.6	V	
Driver ON-resist (COM)		Rcom1	$\begin{aligned} & \pm \mathrm{I}_{\mathrm{d}}=1 \mathrm{uA} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}, \end{aligned}$	II COM Terminal)		-	20	$\mathrm{k} \Omega$	8
Driver ON-resist (SEG)		RsEG1	$\begin{aligned} & \pm \mathrm{I}_{\mathrm{d}}=1 \mathrm{uA} \\ & \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{oD},}, \end{aligned}$	Il SEG Terminal)		-	30	k Ω	8
Driver Output-resist (COM)		Rcoma	$\begin{aligned} & \pm l_{d}=1 \mathrm{uA}(A \\ & \mathrm{V}_{0}=\mathrm{V}_{1}, \mathrm{~V}_{4} \end{aligned}$	Il COM Terminal)	-	-	40	$\mathrm{k} \Omega$	8
Driver Output-resist (SEG)		RsEG2	$\begin{aligned} & \pm l_{d}=1 \mathrm{uA}(A \\ & \mathrm{V}_{\mathrm{o}}=\mathrm{V}_{2}, \mathrm{~V}_{3} \end{aligned}$	Il SEG Terminal)	-	-	50	$\mathrm{k} \Omega$	8
Driver current		IV ${ }_{1}$	V_{1} Sink Cu	rent	-	-	-12.3	uA	
		IV ${ }_{\text {d }}$	V_{4} Source	Current	16.8	-	-	uA	
Input Leak Current		ILI	$\mathrm{V}_{\mathrm{in}}=0 \sim \mathrm{~V}$		-1	-	1	uA	6
Pull-up MOS Current		-Ip	V Do $=3 \mathrm{~V}$ (ALL	DB, K $\mathrm{O}_{0} \sim \mathrm{~K}_{3}$ terminal)	10	25	50	uA	
Operating Current		loor	$\begin{aligned} & \text { fosc }=\text { Interna } \\ & V_{D D}=3 \mathrm{~V}, \mathrm{On} \end{aligned}$	OSC on Display display, $\mathrm{V}_{5}=-5 \mathrm{~V}$		320	380	uA	7
		1002	$\begin{aligned} & \text { fosc }=\text { Interna } \\ & V_{D D}=3 \mathrm{~V}, \mathrm{On} \end{aligned}$	OSC on Display access, tcyce = 5uS		-	640	uA	7
voltage converter Part	Output Voltage	$V_{\text {sout }}$	$\begin{aligned} & \mathrm{V} \text { DD }=3 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline \text { lout } 3 \text { Times } \\ &=100 \mathrm{uA} \\ & \hline \end{aligned}$	-4.6	-4.8		V	
		$V_{\text {ef }}$	$\mathrm{R} \mathrm{L}=\infty$	3 Times	90.0	95.0		\%	
LCD Drive Voltage		V_{1}	$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \\ & \mathrm{~V}_{5}=0 \mathrm{~V} \end{aligned}$ Measured at COM/SEG terminal		2.44	2.57	2.70	v	
		V_{2}			2.01	2.14	2.27		
		V_{3}			0.73	0.86	0.99		
		V_{4}			0.30	0.43	0.56		
Bleeder Resistance $\mathrm{R}_{\mathrm{B}}\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{5}\right) / \mathrm{IB}$ I :Bleeder Resistance Cur. R_{B} : 5 Bleeder Resist		R	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{5}=3 \mathrm{~V}$			5.0		M Ω	
eg. Out Op Re	t Voltage	$V_{\text {Reg }}$	RL= ∞, Revv	$\mathrm{M} \Omega$, $\mathrm{V}_{\text {Sout }}=-10.8 \mathrm{~V}$	$\mathrm{V}_{\text {Do }}$-10.8	-	$\mathrm{V}_{\text {Do- }} 1.8$	v	
	ating voltage	$V_{\text {sout }}$	Voo Refere		Voo-11	-	$\mathrm{V}_{\text {Do }}$-3.6		
	ence Voltage	Vref	Voo Refere	ce, $\mathrm{Ta}=25^{\circ} \mathrm{C}$	Voo-0.75	Voo-1.05	Voo-1.35		
Clock Oscillation Freq.		fosc	$\mathrm{V}_{\text {Do }}=3 \mathrm{~V}$,	$=25^{\circ} \mathrm{C}$	125	180	235	kHz	
LCD Driving Voltage		V lco	$\mathrm{V}_{\text {sout }}$ Term	$\mathrm{al}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{oo} \text {-3 }}$	-	$\mathrm{V}_{\text {oo-1 }} 13.5$	V	9

Note-4 : Input/Output structure except LCD display are as shown below.
-Input terminal structure
(without pull-up MOS)
Applicated terminals : E/SCL, RS,
R/W, P/S, SEL, RESET, LCD/KEY
(Pull-up with MOS, schmitt)
$\mathrm{K}_{0} \sim \mathrm{~K}_{3}$

(Pull down MOS)
TEST

-Input terminals structure
Applicated terminal : OSC1

-Common terminals
Input/Output structure.
Applicated terminal
: DB7 to DBo

Note-5 : Apply to the output and Input/Output Terminals.
Note-6 : Except current of pull-up MOS and output drive MOS.
Note-7 : Except Input/Output part current but including the current on bleeder resistance. If the input level is medium, current consumption will increase due to penetration current. therefore, the input level must be fixed to "H" or "L".

-Operating Current Measurement Circuit

Note-8: Rcom and Rseg are the resistance values between power supply terminals ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{5004}$) and each common terminal (Com_{1} to $\mathrm{Com}_{32} / \mathrm{COMM}_{1}$ to COMM_{4}) and Supply voltage (VDD, $V_{\text {50ut }}$) and each segment terminal (SEG ${ }_{1}$ to SEG $_{60} /$ SEGM $_{1}$ to SEGM $_{2}$) respectively, and measured when the current Id is flown on every common and segment terminals at same time.
Note-9 : Apply to the voltage from each COM and SEG are less than $\pm 0.15 \mathrm{~V}$ against the LCD driving contrast voltage ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {50ut }}$) at no load condition.

Voltage converter characteristics

Internal bleeder resistance

NJU6475B

- BUS TIMING CHARACTERISTICS
-Serial Interface sequence
$\left(\mathrm{V}_{\mathrm{DD}}=2.4 \sim 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=-20 \sim+75^{\circ} \mathrm{C}\right)$

P A R A M E T ER			SYMBOL	MIN.	MAX.	CONDITION	UNIT
Serial clock cycle time			tcyce	1	-	Fig. 1	uS
Serial clock	width	"High" level	tsch	300	-	Fig. 1	nS
		"Low" level	tscl	700	-	Fig. 1	nS
Serial clock rise and fall down time			tscr, tsct	-	20	Fig. 1	nS
Chip select pulse width			PW cs	500	-	Fig. 1	nS
Chip select set up time			tcsu	200	-	Fig. 1	nS
Chip select hold time			tch	300	-	Fig. 1	nS
Chip select rise and fall time			tcss, tcst	-	20	Fig. 1	nS
Set up time		R/W, LCD/KEY-CS	$\mathrm{t}_{\text {As }}$	200	-	Fig. 1	nS
Address hold time			$\mathrm{taH}^{\text {t }}$	200	-	Fig. 1	nS
Serial input data set up time			tsisu	200	-	Fig. 1	nS
Serial input data hold time			tsit	200	-	Fig. 1	nS
Serial output data delay time			tsod	-	700	Fig. 1	nS
Serial output data hold time			tsor	200	-	Fig. 1	nS

Serial Interface

Fig. 3 Serial Interface Sequence Characteristics
-I/O Part sequence

P A R A M E T E R	S Y M B O L	MIN.	MAX.	CONDITON	UNIT
Port set time	tps	-	500	Fig. 2	uS

-The load of DB_{0} to DB_{7} is $\mathrm{CL}=100 \mathrm{pF}$

Fig. 2 I/O Port Sequence (Serial Interface)
-The input conditions of using hardware reset circuit.
Input Timing

P A R A M E T E R	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Reset Input RAW level width	trsL	-	1.2	-	-	ms

-The power supply conditions of using power on reset circuit.

$$
\left(\mathrm{Ta}=-20 \sim+75^{\circ} \mathrm{C}\right)
$$

P A R A M E T E R	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
The power supply rise time	trod	-	0.1	-	5	ms
The power OFF time	tofF	-	1	-	-	ms

Since the internal initialization circuits will not operate normally unless the above conditions are met, in such a case of initialized by instruction. (Refer to initialization by the instruction)
toff specifies the power off time in a short period off or cyclical on/off.

[^0]-Key Scan Sequence

P A R A M E T ER	SYMBOL	MIN.	TYP.	MAX.	CONDITION	UNIT
E/SCL-S ${ }_{0}$ to S_{7} Delay time	tkos	-	66.7	300	Fig. 3	US
Key scan pulse width "H","L" level	tkp	-	44.4	48	Fig. 3	US
Key scan time	tks	-	0.36	0.38	Fig. 3	mS
REQ output delay time	tков	-	-	1.0	Fig. 3	US
Key in check signal frequency	t_{k}	0.98	1.41	1.84	Fig. 3	KHz

-The load of K_{0} to K_{3} is $\mathrm{CL}=20 \mathrm{pF}$

Fig. 3 Key scan sequence
-External clock input

P A R A M E T E R	SYMBOL	MIN.	MAX.	CONDITION	UNIT
External clock operating frequency	f_{cP}	125	235	Fig. 4	KHz
External clock duty	Duty	45	55	Fig. 4	$\%$
External clock rise time	tcpr	-	0.2	Fig. 4	uS
External clock fall time	tcpi	-	0.2	Fig. 4	uS

Fig. 4 External clock input
-The key scan circuit timing characteristics measurement cricurit

■ LCD DRIVING WAVE FORM

APPLICATION CIRCUIT (1)

12-Character 4-Line
(Terminal description, Mode A)

12-Character 4-Line
(Terminal description, Mode B)

MEMO

[^0]: * toff specifies the power off time in a short period off or cyclical ON/OFF.

